论文标题
用于AMBSC辅助合作NOMA IOT网络的节能范围和资源优化
Energy-Efficient Beamforming and Resource Optimization for AmBSC-Assisted Cooperative NOMA IoT Networks
论文作者
论文摘要
在本手稿中,我们提出了一个基于多个Antenna环境反向散射通信(AMBSC)辅助合作的非正交多访问(NOMA)的节能交替优化框架,用于下一代(NG)启用的通信网络。具体而言,通过优化发射器的IoT Noma用户的主动式光边形矢量和功率分配系数(PAC)以及在多型Antenna辅助背面的多型型辅助载体上,IOT NOMA用户的主动式光边形矢量和功率分配系数(PAC)以及在多型疗法载体辅助固定器上进行了无源光 - 辅助矢量,可以实现能源效率的最大化。通常,增加每个集群中的物联网NOMA用户的数量会导致群间干扰(ICI)(在不同的群集中)和群集内干扰(在IoT Noma用户中)。为了应对ICI的影响,我们利用了基于零的(ZF)的主动梁形成(ZF),以及在源节点处的有效聚类技术。此外,通过利用有效的功率分配政策来减轻群集内干扰的影响,该政策在服务质量(QoS),合作,SIC解码和强力预算约束下确定物联网使用者的PAC。此外,通过利用连续的convex近似(SCA)近似以及基于受惩罚的方法获得了convex(DC)编程的差异,将被考虑的非凸被无源光上方的问题转化为标准的半准编程(SDP)问题,而convex(DC)编程的差异(DC)编程的差异是基于受惩罚的方法。此外,模拟结果的数值分析表明,所提出的能源效率最大化算法通过仅在少数迭代中实现收敛来表现出有效的性能。
In this manuscript, we present an energy-efficient alternating optimization framework based on the multi-antenna ambient backscatter communication (AmBSC) assisted cooperative non-orthogonal multiple access (NOMA) for next-generation (NG) internet-of-things (IoT) enabled communication networks. Specifically, the energy-efficiency maximization is achieved for the considered AmBSC-enabled multi-cluster cooperative IoT NOMA system by optimizing the active-beamforming vector and power-allocation coefficients (PAC) of IoT NOMA users at the transmitter, as well as passive-beamforming vector at the multi-antenna assisted backscatter node. Usually, increasing the number of IoT NOMA users in each cluster results in inter-cluster interference (ICI) (among different clusters) and intra-cluster interference (among IoT NOMA users). To combat the impact of ICI, we exploit a zero-forcing (ZF) based active-beamforming, as well as an efficient clustering technique at the source node. Further, the effect of intra-cluster interference is mitigated by exploiting an efficient power-allocation policy that determines the PAC of IoT NOMA users under the quality-of-service (QoS), cooperation, SIC decoding, and power-budget constraints. Moreover, the considered non-convex passive-beamforming problem is transformed into a standard semi-definite programming (SDP) problem by exploiting the successive-convex approximation (SCA) approximation, as well as the difference of convex (DC) programming, where Rank-1 solution of passive-beamforming is obtained based on the penalty-based method. Furthermore, the numerical analysis of simulation results demonstrates that the proposed energy-efficiency maximization algorithm exhibits an efficient performance by achieving convergence within only a few iterations.