论文标题
学习何时说“我不知道”
Learning When to Say "I Don't Know"
论文作者
论文摘要
我们提出了一种新的拒绝期权分类技术,以识别和删除给定神经分类器和数据集中决策空间中不确定性区域。这种现有的配方采用了学习的拒绝(删除)/选择功能,并且需要拒绝示例的已知成本或对所选示例的准确性或覆盖范围的强大限制。我们通过分析互补拒绝区域并采用验证集来学习每级软智能阈值来考虑替代公式。目的是最大程度地提高所选示例的准确性,但在被拒绝的示例上受到自然随机性津贴(拒绝比正确的预测更不正确)。我们提供的结果显示了使用最先进的预测模型,显示了使用2-D点,图像和文本分类数据集的校准/未校准的SoftMax得分的好处。源代码可在https://github.com/osu-cvl/learning-idk上找到。
We propose a new Reject Option Classification technique to identify and remove regions of uncertainty in the decision space for a given neural classifier and dataset. Such existing formulations employ a learned rejection (remove)/selection (keep) function and require either a known cost for rejecting examples or strong constraints on the accuracy or coverage of the selected examples. We consider an alternative formulation by instead analyzing the complementary reject region and employing a validation set to learn per-class softmax thresholds. The goal is to maximize the accuracy of the selected examples subject to a natural randomness allowance on the rejected examples (rejecting more incorrect than correct predictions). We provide results showing the benefits of the proposed method over naïvely thresholding calibrated/uncalibrated softmax scores with 2-D points, imagery, and text classification datasets using state-of-the-art pretrained models. Source code is available at https://github.com/osu-cvl/learning-idk.