论文标题

在哈密顿QCD方法中,polyakov循环的有效潜力

The effective potential of the Polyakov loop in the Hamiltonian approach to QCD

论文作者

Quandt, Markus, Reinhardt, Hugo

论文摘要

我们研究了Polyakov循环的有效潜力,这是有限温度QCD中解料相变​​的顺序参数。我们的工作基于库仑仪的哈密顿方法,其中有限温度$ t $是通过压实一个空间方向来引入的。我们简要审查了这种方法,并通过包括动态夸克来扩展Yang-Mills行业的早期工作。在第一个近似值中,我们遵循通常的功能方法,仅包含对能量的一环贡献,而有限温度传播器则由其$ t = 0 $计数器零件代替。发现这给出了对相转换的糟糕描述,特别是对于完整QCD的情况,$ n_f = 3 $浅口味。讨论了这种意外结果的物理原因,与夸克的脱落趋势相比,将其固定在Gluon限制的相对弱点上。我们试图通过包括两层术语到能源的相关GLUON贡献来克服这个问题。我们发现,两循环的校正确实具有加强Gluon限制并在狭窄阶段削弱非物理效应的趋势,同时略微增加了(伪 - )临界温度$ t^\ ast $。为了在限制阶段充分抑制工件,我们必须将参数调整为相当大的值,将临界温度提高到$ t^\ ast \ of 340 \,\ mathrm {Mev} $ for $ g = su(2)$。

We investigate the effective potential of the Polyakov loop, which is the order parameter for the deconfinement phase transition in finite temperature QCD. Our work is based on the Hamiltonian approach in Coulomb gauge where finite temperature $T$ is introduced by compactifying one space direction. We briefly review this approach and extend earlier work in the Yang-Mills sector by including dynamical quarks. In a first approximation, we follow the usual functional approach and include only one-loop contributions to the energy, with the finite temperature propagators replaced by their $T=0$ counter parts. It is found that this gives a poor description of the phase transition, in particular for the case of full QCD with $N_f = 3$ light flavours. The physical reasons for this unexpected result are discussed, and pinned down to a relative weakness of gluon confinement compared to the deconfining tendency of the quarks. We attempt to overcome this issue by including the relevant gluon contributions from the two-loop terms to the energy. We find that the two-loop corrections have indeed a tendency to strengthen the gluon confinement and weaken the unphysical effects in the confining phase, while slightly increasing the (pseudo-)critical temperature $T^\ast$ at the same time. To fully suppress artifacts in the confining phase, we must tune the parameters to rather large values, increasing the critical temperature to $T^\ast \approx 340\,\mathrm{MeV}$ for $G=SU(2)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源