论文标题

通过问题分类来回答的域适应性

Domain Adaptation for Question Answering via Question Classification

论文作者

Yue, Zhenrui, Zeng, Huimin, Kou, Ziyi, Shang, Lanyu, Wang, Dong

论文摘要

问答(QA)在回答定制域中的问题方面表现出了令人印象深刻的进展。然而,域的适应性仍然是质量保证系统最难以捉摸的挑战之一,尤其是当QA系统在源域中训练但部署在不同的目标域中时。在这项工作中,我们调查了问题分类对质量检查域适应的潜在好处。我们提出了一个新颖的框架:问题回答的问题分类(QC4QA)。具体而言,采用问题分类器将问题类分配给源数据和目标数据。然后,我们通过伪标记以自我监督的方式进行联合培训。为了优化,源和目标域之间的域间差异通过最大平均差异(MMD)距离降低。我们还最大程度地减少了同一问题类别的质量质量样本中的类内部差异,以进行细粒度适应性表现。据我们所知,这是质量检查域适应中的第一部作品,以通过自我监督的适应来利用问题分类。我们证明了拟议的QC4QA的有效性,并针对多个数据集上的最先进基准进行了一致的改进。

Question answering (QA) has demonstrated impressive progress in answering questions from customized domains. Nevertheless, domain adaptation remains one of the most elusive challenges for QA systems, especially when QA systems are trained in a source domain but deployed in a different target domain. In this work, we investigate the potential benefits of question classification for QA domain adaptation. We propose a novel framework: Question Classification for Question Answering (QC4QA). Specifically, a question classifier is adopted to assign question classes to both the source and target data. Then, we perform joint training in a self-supervised fashion via pseudo-labeling. For optimization, inter-domain discrepancy between the source and target domain is reduced via maximum mean discrepancy (MMD) distance. We additionally minimize intra-class discrepancy among QA samples of the same question class for fine-grained adaptation performance. To the best of our knowledge, this is the first work in QA domain adaptation to leverage question classification with self-supervised adaptation. We demonstrate the effectiveness of the proposed QC4QA with consistent improvements against the state-of-the-art baselines on multiple datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源