论文标题

LF-VISLAM:用于移动代理上带负成像平面的大型视野摄像机的大满贯框架

LF-VISLAM: A SLAM Framework for Large Field-of-View Cameras with Negative Imaging Plane on Mobile Agents

论文作者

Wang, Ze, Yang, Kailun, Shi, Hao, Li, Peng, Gao, Fei, Bai, Jian, Wang, Kaiwei

论文摘要

同时定位和映射(SLAM)已成为自动驾驶和机器人技术领域的关键方面。视觉大满贯的一个关键组成部分是相机的视野(FOV),因为较大的FOV允许感知到更广泛的周围元素和功能。但是,当摄像机的FOV达到负半平面时,使用[U,V,1]^T表示图像特征点的传统方法变得无效。虽然全景FOV对于循环封闭是有利的,但在大角度的差异下,它的好处并不容易实现,因为循环封闭帧无法通过现有方法轻松匹配。随着宽圈全景数据上的循环封闭进一步带有许多异常值,因此传统的异常排斥方法不适用。为了解决这些问题,我们提出了LF-VISLAM,这是一个视觉惯性的大满贯框架,用于带有循环封闭的非常大的FOV。引入具有单位长度的三维矢量,即使在负半平面上,也有效地表示特征点。借用了SLAM系统的态度信息,以指导循环闭合的特征点检测。此外,将基于单位长度表示的新的离群拒绝方法集成到循环闭合模块中。我们使用全景环形透镜(PAL)系统收集Palvio数据集,其整个FOV为360°X(40°〜120°)和一个惯性测量单元(IMU),用于视觉惯性遗传(VIO),以解决缺乏全景SLAM数据集的问题。既定的Palvio和公共数据集的实验表明,拟议的LF-VISLAM优于最先进的大满贯方法。我们的代码将在https://github.com/flysoaryun/lf-vislam上开放。

Simultaneous Localization And Mapping (SLAM) has become a crucial aspect in the fields of autonomous driving and robotics. One crucial component of visual SLAM is the Field-of-View (FoV) of the camera, as a larger FoV allows for a wider range of surrounding elements and features to be perceived. However, when the FoV of the camera reaches the negative half-plane, traditional methods for representing image feature points using [u,v,1]^T become ineffective. While the panoramic FoV is advantageous for loop closure, its benefits are not easily realized under large-attitude-angle differences where loop-closure frames cannot be easily matched by existing methods. As loop closure on wide-FoV panoramic data further comes with a large number of outliers, traditional outlier rejection methods are not directly applicable. To address these issues, we propose LF-VISLAM, a Visual Inertial SLAM framework for cameras with extremely Large FoV with loop closure. A three-dimensional vector with unit length is introduced to effectively represent feature points even on the negative half-plane. The attitude information of the SLAM system is leveraged to guide the feature point detection of the loop closure. Additionally, a new outlier rejection method based on the unit length representation is integrated into the loop closure module. We collect the PALVIO dataset using a Panoramic Annular Lens (PAL) system with an entire FoV of 360°x(40°~120°) and an Inertial Measurement Unit (IMU) for Visual Inertial Odometry (VIO) to address the lack of panoramic SLAM datasets. Experiments on the established PALVIO and public datasets show that the proposed LF-VISLAM outperforms state-of-the-art SLAM methods. Our code will be open-sourced at https://github.com/flysoaryun/LF-VISLAM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源