论文标题

通过圆锥编程的多参数量子计量的紧密cramér-rao类型界限

Tight Cramér-Rao type bounds for multiparameter quantum metrology through conic programming

论文作者

Hayashi, Masahito, Ouyang, Yingkai

论文摘要

为了解锁量子传感器的最大潜力,具有实用的测量策略至关重要,可以以最佳的精度估算不兼容的参数。但是,即使对于探针状态的不相关测量值,也尚不清楚如何找到具有最佳精确度的实用测量值。在这里,我们提供了一种具体的方式,以最佳的精确度找到不相关的测量策略。我们通过引入一个圆锥编程框架来解决这个基本问题,该框架统一了对公共伞下不相关和相关的测量策略的多参数估计的精确界限理论。也就是说,我们给出的精度界限是由在矩阵的张量产品空间(包括特定的可分离矩阵锥)上定义的各种锥上的线性程序产生的。随后,我们的理论使我们能够开发出一种有效的算法,该算法可以计算上层和下限,以确保最终的精确度结合了不相关的测量策略,在这些范围可能会紧密的情况下。特别是,由我们的理论产生的不相关的测量策略使上限饱和到最终的精度结合。同样,我们从数字上表明,以前的有效计算界限与最终的精度界限之间存在严格的差距。

In the quest to unlock the maximum potential of quantum sensors, it is of paramount importance to have practical measurement strategies that can estimate incompatible parameters with best precisions possible. However, it is still not known how to find practical measurements with optimal precisions, even for uncorrelated measurements over probe states. Here, we give a concrete way to find uncorrelated measurement strategies with optimal precisions. We solve this fundamental problem by introducing a framework of conic programming that unifies the theory of precision bounds for multiparameter estimates for uncorrelated and correlated measurement strategies under a common umbrella. Namely, we give precision bounds that arise from linear programs on various cones defined on a tensor product space of matrices, including a particular cone of separable matrices. Subsequently, our theory allows us to develop an efficient algorithm that calculates both upper and lower bounds for the ultimate precision bound for uncorrelated measurement strategies, where these bounds can be tight. In particular, the uncorrelated measurement strategy that arises from our theory saturates the upper bound to the ultimate precision bound. Also, we show numerically that there is a strict gap between the previous efficiently computable bounds and the ultimate precision bound.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源