论文标题
二重奏:无调的设备云协作参数生成框架,用于有效设备模型概括
DUET: A Tuning-Free Device-Cloud Collaborative Parameters Generation Framework for Efficient Device Model Generalization
论文作者
论文摘要
设备模型概括(DMG)是一个实用但不足的研究主题,用于机上机器学习应用程序。它旨在提高在资源受限设备上部署的预训练模型的概括能力,例如提高智能手机预先训练的云模型的性能。虽然很多作品研究了跨云和设备的数据分布变化,但其中大多数专注于模型对个性化数据进行微调,以促进DMG。尽管它们很有希望,但这些方法仍需要重新训练,这实际上是由于对实时数据进行梯度计算时的过度拟合问题和时间延迟而变得不可行。在本文中,我们认为通过微调带来的计算成本可能是不必要的。因此,我们提出了一种新的观点,可以改善DMG而不增加计算成本,即设备特定的参数生成,该参数将数据分布直接映射到参数。具体而言,我们建议有效的设备云协作参数生成框架二重奏。二重奏部署在功能强大的云服务器上,该服务器仅需要转发传播的低成本和设备和云之间数据传输的低时间延迟。通过这样做,二重奏可以在单个设备的个性化实时数据上排练特定于设备的模型重量实现。重要的是,我们的二重奏优雅地将云和设备连接为“二重奏”协作,使DMG从微调中释放,并启用更快,更准确的DMG范式。我们在三个公共数据集上对二重奏进行了广泛的实验研究,实验结果证实了我们框架对不同DMG任务的有效性和普遍性。
Device Model Generalization (DMG) is a practical yet under-investigated research topic for on-device machine learning applications. It aims to improve the generalization ability of pre-trained models when deployed on resource-constrained devices, such as improving the performance of pre-trained cloud models on smart mobiles. While quite a lot of works have investigated the data distribution shift across clouds and devices, most of them focus on model fine-tuning on personalized data for individual devices to facilitate DMG. Despite their promising, these approaches require on-device re-training, which is practically infeasible due to the overfitting problem and high time delay when performing gradient calculation on real-time data. In this paper, we argue that the computational cost brought by fine-tuning can be rather unnecessary. We consequently present a novel perspective to improving DMG without increasing computational cost, i.e., device-specific parameter generation which directly maps data distribution to parameters. Specifically, we propose an efficient Device-cloUd collaborative parametErs generaTion framework DUET. DUET is deployed on a powerful cloud server that only requires the low cost of forwarding propagation and low time delay of data transmission between the device and the cloud. By doing so, DUET can rehearse the device-specific model weight realizations conditioned on the personalized real-time data for an individual device. Importantly, our DUET elegantly connects the cloud and device as a 'duet' collaboration, frees the DMG from fine-tuning, and enables a faster and more accurate DMG paradigm. We conduct an extensive experimental study of DUET on three public datasets, and the experimental results confirm our framework's effectiveness and generalisability for different DMG tasks.