论文标题

风格可变且无关紧要的可识别的人重新识别

Style Variable and Irrelevant Learning for Generalizable Person Re-identification

论文作者

Chen, Haobo, Zhao, Chuyang, Tu, Kai, Chen, Junru, Li, Yadong, Li, Boxun

论文摘要

最近,由于被监督人员的重新识别(REID)的表现不佳,域名(DG)人Reid引起了很多关注,旨在学习一个不敏感的模型,并可以抵抗域偏见的影响。在本文中,我们首先通过实验验证样式因素是域偏差的重要组成部分。基于这个结论,我们提出了一种样式变量且无关紧要的学习方法(SVIL)方法,以消除样式因素对模型的影响。具体来说,我们在SVIL中设计了一个样式的抖动模块(SJM)。 SJM模块可以丰富特定源域的样式多样性,并减少各种源域的样式差异。这导致该模型着重于与身份相关的信息,并且对样式变化不敏感。此外,我们将SJM模块与元学习算法有机结合,从而最大程度地提高了益处并进一步提高模型的概括能力。请注意,我们的SJM模块是插件,推理不含成本。广泛的实验证实了我们的SVIL的有效性,而我们的方法的表现优于DG-REID基准测试的最新方法。

Recently, due to the poor performance of supervised person re-identification (ReID) to an unseen domain, Domain Generalization (DG) person ReID has attracted a lot of attention which aims to learn a domain-insensitive model and can resist the influence of domain bias. In this paper, we first verify through an experiment that style factors are a vital part of domain bias. Base on this conclusion, we propose a Style Variable and Irrelevant Learning (SVIL) method to eliminate the effect of style factors on the model. Specifically, we design a Style Jitter Module (SJM) in SVIL. The SJM module can enrich the style diversity of the specific source domain and reduce the style differences of various source domains. This leads to the model focusing on identity-relevant information and being insensitive to the style changes. Besides, we organically combine the SJM module with a meta-learning algorithm, maximizing the benefits and further improving the generalization ability of the model. Note that our SJM module is plug-and-play and inference cost-free. Extensive experiments confirm the effectiveness of our SVIL and our method outperforms the state-of-the-art methods on DG-ReID benchmarks by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源