论文标题

评估杂交控制方法在早期肿瘤学试验中:基于Morpheus-UC试验的仿真研究

Evaluating hybrid controls methodology in early-phase oncology trials: a simulation study based on the MORPHEUS-UC trial

论文作者

Wang, Guanbo, Costello, Melanie Poulin, Pang, Herbert, Zhu, Jiawen, Helms, Hans-Joachim, Reyes-Rivera, Irmarie, Platt, Robert W., Pang, Menglan, Koukounari, Artemis

论文摘要

IB/II期肿瘤学试验尽管样本量很小,但旨在提供有关新型药物开发的最佳内部公司决策信息。可以使用混合控制(当前控制组和来自一个或多个历史试验数据源的控制的组合[HTD])来提高统计精度。在这里,我们评估了Roche HTD的两个来源,以通过广泛的模拟研究在靶向治疗中构建杂种控制。我们的仿真基于一个实验组的真实数据和morpheus-UC期IB/II研究的控制组,以及两个用于Atezolizumab单一疗法的Roche HTD。我们考虑了潜在的并发症,例如模型错误指定,未衡量的混杂,当前治疗组的不同样本大小以及三个试验之间的异质性。我们评估了两种频繁的方法(Cox和Weibull加速失败时间[AFT]模型)和贝叶斯动态借用中的三个不同的先验(带有Weibull AFT模型),并且在估算治疗对生存量的影响和诸如Marginal Heabarkardaharkard ratios的效果的影响时,每个方法都进行了修改。我们评估这些方法在不同的环境中的性能和概括性的潜力来补充早期肿瘤学试验中的决策。结果表明,贝叶斯动态借贷中提出的联合频繁方法和非信息先验,而没有对协变量进行调整,尤其是当三个试验中的治疗效果异质时。为了在这种情况下概括混合控制方法,我们建议更多的仿真研究。

Phase Ib/II oncology trials, despite their small sample sizes, aim to provide information for optimal internal company decision-making concerning novel drug development. Hybrid controls (a combination of the current control arm and controls from one or more sources of historical trial data [HTD]) can be used to increase the statistical precision. Here we assess combining two sources of Roche HTD to construct a hybrid control in targeted therapy for decision-making via an extensive simulation study. Our simulations are based on the real data of one of the experimental arms and the control arm of the MORPHEUS-UC Phase Ib/II study and two Roche HTD for atezolizumab monotherapy. We consider potential complications such as model misspecification, unmeasured confounding, different sample sizes of current treatment groups, and heterogeneity among the three trials. We evaluate two frequentist methods (with both Cox and Weibull accelerated failure time [AFT] models) and three different priors in Bayesian dynamic borrowing (with a Weibull AFT model), and modifications within each of those, when estimating the effect of treatment on survival outcomes and measures of effect such as marginal hazard ratios. We assess the performance of these methods in different settings and potential of generalizations to supplement decisions in early-phase oncology trials. The results show that the proposed joint frequentist methods and noninformative priors within Bayesian dynamic borrowing with no adjustment on covariates are preferred, especially when treatment effects across the three trials are heterogeneous. For generalization of hybrid control methods in such settings we recommend more simulation studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源