论文标题
逆动力学MPC通过NullSpace分辨率
Inverse-Dynamics MPC via Nullspace Resolution
论文作者
论文摘要
使用逆动力学的最佳控制(OC)提供了数值益处,例如粗略优化,更便宜的衍生物计算和高收敛速率。但是,要利用腿部机器人的模型预测控制(MPC)中的这些好处,有效处理其大量平等约束至关重要。为此,我们首先(i)提出了一种新的方法来处理基于NullSpace参数化的平等约束。我们的方法可以适当地平衡最佳性,并适当地进行动力和平等构成可行性,从而增加吸引到高质量的本地最小值的盆地。为此,我们(ii)通过合并优点功能来修改可行性驱动的搜索。此外,我们介绍了(iii)的(iii)凝结的逆动力学公式,该逆动力学考虑了任意执行器模型。我们还提出了基于感知运动框架内的基于反向动力学的新型MPC。最后,我们提出了(v)对正向和逆动力学的最佳控制的理论比较,并通过数值评估这两种比较。我们的方法使逆动力学MPC在硬件上首次应用,从而在Anymal机器人上进行了最新的动态攀登。我们在各种机器人问题上进行基准测试,并产生敏捷和复杂的操作。我们显示了我们的无空间分辨率和凝结配方的计算降低(高达47.3%)。我们通过以高收敛速率解决粗略优化问题(最高10 Hz的离散化),提供了方法的益处。我们的算法在Crocoddyl内公开可用。
Optimal control (OC) using inverse dynamics provides numerical benefits such as coarse optimization, cheaper computation of derivatives, and a high convergence rate. However, to take advantage of these benefits in model predictive control (MPC) for legged robots, it is crucial to handle efficiently its large number of equality constraints. To accomplish this, we first (i) propose a novel approach to handle equality constraints based on nullspace parametrization. Our approach balances optimality, and both dynamics and equality-constraint feasibility appropriately, which increases the basin of attraction to high-quality local minima. To do so, we (ii) modify our feasibility-driven search by incorporating a merit function. Furthermore, we introduce (iii) a condensed formulation of inverse dynamics that considers arbitrary actuator models. We also propose (iv) a novel MPC based on inverse dynamics within a perceptive locomotion framework. Finally, we present (v) a theoretical comparison of optimal control with forward and inverse dynamics and evaluate both numerically. Our approach enables the first application of inverse-dynamics MPC on hardware, resulting in state-of-the-art dynamic climbing on the ANYmal robot. We benchmark it over a wide range of robotics problems and generate agile and complex maneuvers. We show the computational reduction of our nullspace resolution and condensed formulation (up to 47.3%). We provide evidence of the benefits of our approach by solving coarse optimization problems with a high convergence rate (up to 10 Hz of discretization). Our algorithm is publicly available inside CROCODDYL.