论文标题

kerr时空中通用轨道的点粒子的自力正规化:电磁和重力案例

Self-force regularization of a point particle for generic orbits in Kerr spacetime: electromagnetic and gravitational cases

论文作者

Heffernan, Anna

论文摘要

自我力量是对极端质量比Insprals的波形建模的领先方法,这是ESA未来的基于空间的重力波检测器LISA的关键目标。在对这些系统进行建模时,一个将较小的身体近似为一个点粒子,导致有问题的奇异点需要去除。这种奇异结构的建模已定居在Detweiler-Whiting奇异场上,作为黄金标准。作为处理波浪方程本身的解决方案,它在去除时会留下平滑的固定场,这是对均匀波方程的解决方案,就像其建立良好的扁平时空对应物一样。模式-AM方法可以通过球形谐波分解来通过模式减去这种奇异模式。人们拥有的模式越多,$ \ ell $ sum中的收敛速度就越快,使这些表达式变得非常有益,尤其是考虑到波形生产的沉重计算负担。直到最近,只有两个领先订单以Kerr Spacetime中的通用轨道而闻名。在上一篇论文中,我们在弯曲的时空中生成了一个为标量带电粒子的下一个非零参数,为电磁和重力案例奠定了基础。

The self-force is the leading method in modelling waveforms for extreme mass ratio inspirals, a key target of ESA's future space-based gravitational wave detector LISA. In modelling these systems, one approximates the smaller body as a point particle leading to problematic singularities that need to be removed. Modelling of this singular structure has settled on the Detweiler-Whiting singular field as the gold standard. As a solution to the governing wave equation itself, on removal, it leaves a smooth regular field that is a solution to the homogeneous wave equation, much like its well established flat spacetime counterpart. The mode-sum method enables subtraction of this singularity mode by mode via a spherical harmonic decomposition. The more modes one has, the faster the convergence in the $\ell$-sum, making these expressions highly beneficial, especially considering the heavy computational burden of waveform production. Until recently, only the two leading orders were known for generic orbits in Kerr spacetime. In a previous paper, we produced the next non-zero parameter for a scalar charged particle in curved spacetime, laying the groundwork for the electromagnetic and gravitational case which we present here.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源