论文标题

发件人:人脑中萃取,元和次功能连通性提取的半线性深层重建器

SENDER: SEmi-Nonlinear Deep Efficient Reconstructor for Extraction Canonical, Meta, and Sub Functional Connectivity in the Human Brain

论文作者

Zhang, Wei, Bao, Yu

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Deep Linear and Nonlinear learning methods have already been vital machine learning methods for investigating the hierarchical features such as functional connectivity in the human brain via functional Magnetic Resonance signals; however, there are three major shortcomings: 1). For deep linear learning methods, although the identified hierarchy of functional connectivity is easily explainable, it is challenging to reveal more hierarchical functional connectivity; 2). For deep nonlinear learning methods, although non-fully connected architecture reduces the complexity of neural network structures that are easy to optimize and not vulnerable to overfitting, the functional connectivity hierarchy is difficult to explain; 3). Importantly, it is challenging for Deep Linear/Nonlinear methods to detect meta and sub-functional connectivity even in the shallow layers; 4). Like most conventional Deep Nonlinear Methods, such as Deep Neural Networks, the hyperparameters must be tuned manually, which is time-consuming. Thus, in this work, we propose a novel deep hybrid learning method named SEmi-Nonlinear Deep Efficient Reconstruction (SENDER), to overcome the aforementioned shortcomings: 1). SENDER utilizes a multiple-layer stacked structure for the linear learning methods to detect the canonical functional connectivity; 2). SENDER implements a non-fully connected architecture conducted for the nonlinear learning methods to reveal the meta-functional connectivity through shallow and deeper layers; 3). SENDER incorporates the proposed background components to extract the sub-functional connectivity; 4). SENDER adopts a novel rank reduction operator to implement the hyperparameters tuning automatically. To further validate the effectiveness, we compared SENDER with four peer methodologies using real functional Magnetic Resonance Imaging data for the human brain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源