论文标题

视频流的移动边缘计算的调查:机遇和挑战

A Survey on Mobile Edge Computing for Video Streaming: Opportunities and Challenges

论文作者

Khan, Muhammad Asif, Baccour, Emna, Chkirbene, Zina, Erbad, Aiman, Hamila, Ridha, Hamdi, Mounir, Gabbouj, Moncef

论文摘要

5G沟通通过实现较高的吞吐量和较低的延迟来实现为各种应用程序提供的服务质量的重大改进。然而,交互式多媒体应用程序(例如,超高清视频会议,3D和多视频视频流,众筹的视频流,云游戏,虚拟和增强现实)变得越来越雄心勃勃,较高的量和低潜伏期视频流对已经充满拥挤的网络提出了严格的需求。移动边缘计算(MEC)是一种新兴范式,将云计算功能扩展到网络边缘,即基本站级别。为了满足延迟要求并避免使用远程云数据中心的端到端通信,MEC允许在基站存储和处理视频内容(例如,缓存,转码,预处理)。视频按需和实时视频流都可以利用MEC来改善现有服务并开发新颖的用例,例如视频分析和有针对性的广告。预计MEC可以通过提供超可靠和低的延迟流(例如,在增强现实,虚拟现实和自动驾驶汽车),Pervasive Computing(例如,实时视频分析)以及可启用区块链链链的体系结构的安全实时流媒体来重塑视频流的未来。本文对支持MEC的视频流的最新发展进行了全面的调查,从而带来了前所未有的改进,以实现新颖的用例。详细介绍了最先进的审查,其中涵盖了新型的缓存方案,最佳计算卸载,合作的缓存和卸载以及在MEC辅助视频流服务中的人工智能(即机器学习,深度学习和增强学习)的使用(即机器学习,深度学习和增强学习)。

5G communication brings substantial improvements in the quality of service provided to various applications by achieving higher throughput and lower latency. However, interactive multimedia applications (e.g., ultra high definition video conferencing, 3D and multiview video streaming, crowd-sourced video streaming, cloud gaming, virtual and augmented reality) are becoming more ambitious with high volume and low latency video streams putting strict demands on the already congested networks. Mobile Edge Computing (MEC) is an emerging paradigm that extends cloud computing capabilities to the edge of the network i.e., at the base station level. To meet the latency requirements and avoid the end-to-end communication with remote cloud data centers, MEC allows to store and process video content (e.g., caching, transcoding, pre-processing) at the base stations. Both video on demand and live video streaming can utilize MEC to improve existing services and develop novel use cases, such as video analytics, and targeted advertisements. MEC is expected to reshape the future of video streaming by providing ultra-reliable and low latency streaming (e.g., in augmented reality, virtual reality, and autonomous vehicles), pervasive computing (e.g., in real-time video analytics), and blockchain-enabled architecture for secure live streaming. This paper presents a comprehensive survey of recent developments in MEC-enabled video streaming bringing unprecedented improvement to enable novel use cases. A detailed review of the state-of-the-art is presented covering novel caching schemes, optimal computation offloading, cooperative caching and offloading and the use of artificial intelligence (i.e., machine learning, deep learning, and reinforcement learning) in MEC-assisted video streaming services.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源