论文标题

通过主成分分析测试时间适应

Test-Time Adaptation with Principal Component Analysis

论文作者

Cordier, Thomas, Bouvier, Victor, Hénaff, Gilles, Hudelot, Céline

论文摘要

当测试数据与培训数据不同时,机器学习模型很容易失败,这种情况通常在称为分配转移的真实应用程序中遇到。尽管仍然有效,但培训时间知识的效率较低,需要进行测试时间的适应才能保持高性能。以下方法假定批处理层并使用其统计数据进行适应,我们提出了使用主成分分析(TTAWPCA)的测试时间适应,该测试时间推测拟合的PCA并在测试时间适应了基于PCA的奇异值的频谱过滤器,以使PCA的奇异值鲁棒性腐败。 TTAWPCA结合了三个组件:使用主成分分析(PCA)分解给定层的输出,并通过其单数值的惩罚过滤,并用PCA逆变换重建。与当前方法相比,这种通用增强功能增加的参数少。在CIFAR-10-C和CIFAR-100-C上进行的实验证明了使用2000参数的唯一滤波器的有效性和限制。

Machine Learning models are prone to fail when test data are different from training data, a situation often encountered in real applications known as distribution shift. While still valid, the training-time knowledge becomes less effective, requiring a test-time adaptation to maintain high performance. Following approaches that assume batch-norm layer and use their statistics for adaptation, we propose a Test-Time Adaptation with Principal Component Analysis (TTAwPCA), which presumes a fitted PCA and adapts at test time a spectral filter based on the singular values of the PCA for robustness to corruptions. TTAwPCA combines three components: the output of a given layer is decomposed using a Principal Component Analysis (PCA), filtered by a penalization of its singular values, and reconstructed with the PCA inverse transform. This generic enhancement adds fewer parameters than current methods. Experiments on CIFAR-10-C and CIFAR- 100-C demonstrate the effectiveness and limits of our method using a unique filter of 2000 parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源