论文标题

聚合物溶液中气泡的捏

Pinch-off of bubbles in a polymer solution

论文作者

Rajesh, Sreeram, Peddada, Sumukh S, Thiévenaz, Virgile, Sauret, Alban

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The formation of gas bubbles in a liquid occurs in various engineering processes, such as during foam generation or agitation and mixing in bubbly flows. A challenge in describing the initial formation of a gas bubble is due to the singular behavior at pinch-off. Past experiments in Newtonian fluids have shown that the minimum neck radius follows a power-law evolution shortly before the break-up. The exponent of the power-law depends on the viscosity of the surrounding Newtonian liquid, and ranges from 0.5 for low viscosity to 1 for large viscosity. However, bubble formation in a viscoelastic polymer solution remains unclear, and in particular, if the evolution is still captured by a power-law and how the exponent varies with the polymer concentration. In this study, we use high-speed imaging to analyze the bubble pinch-off in solutions of polymers. We characterize the time evolution of the neck radius when varying the concentration and thus the characteristic relaxation time and describe the influence of viscoelasticity on the bubble pinch-off. Our results reveal that the presence of polymers does not influence the thinning until the latter stages, when their presence in sufficient concentration delays the pinch-off.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源