论文标题
将流量标准化以进行介入密度估计
Normalizing Flows for Interventional Density Estimation
论文作者
论文摘要
因果推理的现有机器学习方法通常通过潜在结果平均值(例如平均治疗效应)估计数量。但是,此类数量不会捕获有关潜在结果分布的完整信息。在这项工作中,我们估计了观察数据干预后潜在结果的密度。为此,我们提出了一种称为介入的新型,全参数深度学习方法。具体而言,我们结合了两个归一化的流,即(i)用于估计滋扰参数的滋扰流以及(ii)潜在结果密度参数估计的目标流。我们基于一步偏置校正,进一步开发一个可访问的优化目标,以对目标流参数的有效和双重稳健的估计。结果,我们的介入归一化流提供了正确归一化的密度估计器。在各种实验中,我们证明了我们的介入归一化流是表现力且高效的,并且可以很好地扩展样本量和高维混杂。据我们所知,我们的介入归一化流是第一种适当的全参数,深度学习方法,以估算潜在结果的密度。
Existing machine learning methods for causal inference usually estimate quantities expressed via the mean of potential outcomes (e.g., average treatment effect). However, such quantities do not capture the full information about the distribution of potential outcomes. In this work, we estimate the density of potential outcomes after interventions from observational data. For this, we propose a novel, fully-parametric deep learning method called Interventional Normalizing Flows. Specifically, we combine two normalizing flows, namely (i) a nuisance flow for estimating nuisance parameters and (ii) a target flow for parametric estimation of the density of potential outcomes. We further develop a tractable optimization objective based on a one-step bias correction for efficient and doubly robust estimation of the target flow parameters. As a result, our Interventional Normalizing Flows offer a properly normalized density estimator. Across various experiments, we demonstrate that our Interventional Normalizing Flows are expressive and highly effective, and scale well with both sample size and high-dimensional confounding. To the best of our knowledge, our Interventional Normalizing Flows are the first proper fully-parametric, deep learning method for density estimation of potential outcomes.