论文标题
量子行走二维:控制纠缠硬币和可调型步操作员的方向扩展
Quantum walks in two dimensions: controlling directional spreading with entangling coins and tunable disordered step operator
论文作者
论文摘要
我们研究了一个基于1-D“广义大象量子步行”的2-D无序时间二散的量子步行,其中假定纠缠硬币操作员并为新的一组属性铺平了道路。我们表明,考虑到一个方向的给定疾病,可以控制另一个方向的扩散和纠缠程度。该观察结果有助于断言,这种同类的随机量子步行是一个可控的解干通道,随机性是可调参数,并突出了维数在量子系统中在信息和传输中的作用。
We study a 2-D disordered time-discrete quantum walk based on 1-D `generalized elephant quantum walk' where an entangling coin operator is assumed and which paves the way to a new set of properties. We show that considering a given disorder in one direction, it is possible to control the degree of spreading and entanglement in the other direction. This observation helps assert that the random quantum walks of this ilk serve as a controllable decoherence channel with the degree of randomness being the tunable parameter and highlight the role of dimensionality in quantum systems regarding information and transport.