论文标题
高分辨率语义上一致的图像到图像翻译
High-resolution semantically-consistent image-to-image translation
论文作者
论文摘要
近年来,深度学习已成为遥感科学家最有效的计算机视觉工具之一。但是,遥感数据集缺乏培训标签,这意味着科学家需要解决域适应性问题,以缩小卫星图像数据集之间的差异。结果,随后训练的图像分割模型可以更好地概括并使用现有的一组标签,而不需要新的标签。这项工作提出了一个无监督的域适应模型,该模型可在样式转移阶段保留图像的语义一致性和每个像素质量。本文的主要贡献是提出了SEMI2I模型的改进架构,该模型显着提高了所提出的模型的性能,并使其与最先进的Cycada模型竞争。第二个贡献是在遥感多波段数据集(例如Worldview-2和Spot-6)上测试Cycada模型。提出的模型可在样式传递阶段保留图像的语义一致性和每个像素质量。因此,与SEMI2I模型相比,经过适应图像的训练的语义分割模型显示出可观的性能增长,并达到与最先进的Cycada模型相似的结果。提出的方法的未来开发可能包括生态领域转移,{\ em先验}对数据分布的数据质量评估,或探索域自适应模型的内部体系结构。
Deep learning has become one of remote sensing scientists' most efficient computer vision tools in recent years. However, the lack of training labels for the remote sensing datasets means that scientists need to solve the domain adaptation problem to narrow the discrepancy between satellite image datasets. As a result, image segmentation models that are then trained, could better generalize and use an existing set of labels instead of requiring new ones. This work proposes an unsupervised domain adaptation model that preserves semantic consistency and per-pixel quality for the images during the style-transferring phase. This paper's major contribution is proposing the improved architecture of the SemI2I model, which significantly boosts the proposed model's performance and makes it competitive with the state-of-the-art CyCADA model. A second contribution is testing the CyCADA model on the remote sensing multi-band datasets such as WorldView-2 and SPOT-6. The proposed model preserves semantic consistency and per-pixel quality for the images during the style-transferring phase. Thus, the semantic segmentation model, trained on the adapted images, shows substantial performance gain compared to the SemI2I model and reaches similar results as the state-of-the-art CyCADA model. The future development of the proposed method could include ecological domain transfer, {\em a priori} evaluation of dataset quality in terms of data distribution, or exploration of the inner architecture of the domain adaptation model.