论文标题
MLT-LE:预测具有多任务残留神经网络的药物目标结合亲和力
MLT-LE: predicting drug-target binding affinity with multi-task residual neural networks
论文作者
论文摘要
评估药物目标亲和力是药物发现和开发过程中的关键步骤,但是在实验上获得此类数据既耗时又昂贵。因此,正在广泛开发用于预测结合强度的计算方法。但是,这些方法通常使用单任务方法进行预测,因此忽略了可以从数据中提取的其他信息并用于驱动学习过程。此后,在这项工作中,我们提出了一种多任务方法来结合强度预测。我们的结果表明,这些预测确实可以通过使用相关任务和多任务诱导的正则化的添加信息来从多任务学习方法中受益。
Assessing drug-target affinity is a critical step in the drug discovery and development process, but to obtain such data experimentally is both time consuming and expensive. For this reason, computational methods for predicting binding strength are being widely developed. However, these methods typically use a single-task approach for prediction, thus ignoring the additional information that can be extracted from the data and used to drive the learning process. Thereafter in this work, we present a multi-task approach for binding strength prediction. Our results suggest that these prediction can indeed benefit from a multi-task learning approach, by utilizing added information from related tasks and multi-task induced regularization.