论文标题

动态语义环境中的多机器人任务计划

Multi-robot Mission Planning in Dynamic Semantic Environments

论文作者

Kalluraya, Samarth, Pappas, George J., Kantaros, Yiannis

论文摘要

本文解决了不确定和动态环境中的新语义多机器人计划问题。特别是,环境被不合作,移动,不确定的标记目标占据。这些目标受随机动力学的控制,而它们的当前和未来位置以及其语义标签尚不确定。我们的目标是控制移动传感机器人,以便他们可以完成根据这些目标的当前/未来位置和标签定义的协作语义任务。我们使用线性时间逻辑(LTL)表达这些任务。我们提出了一种基于抽样的方法,该方法探讨了机器人运动空间,任务规范空间以及标记目标的未来配置以设计最佳路径。这些路径在线修订以适应不确定的感知反馈。据我们所知,这是解决不确定和动态语义环境中语义任务计划问题的第一部作品。我们提供了广泛的实验,以证明该方法的效率

This paper addresses a new semantic multi-robot planning problem in uncertain and dynamic environments. Particularly, the environment is occupied with non-cooperative, mobile, uncertain labeled targets. These targets are governed by stochastic dynamics while their current and future positions as well as their semantic labels are uncertain. Our goal is to control mobile sensing robots so that they can accomplish collaborative semantic tasks defined over the uncertain current/future positions and labels of these targets. We express these tasks using Linear Temporal Logic (LTL). We propose a sampling-based approach that explores the robot motion space, the mission specification space, as well as the future configurations of the labeled targets to design optimal paths. These paths are revised online to adapt to uncertain perceptual feedback. To the best of our knowledge, this is the first work that addresses semantic mission planning problems in uncertain and dynamic semantic environments. We provide extensive experiments that demonstrate the efficiency of the proposed method

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源