论文标题

依赖性分析的莫纳达和共同方面

Monadic and Comonadic Aspects of Dependency Analysis

论文作者

Choudhury, Pritam

论文摘要

依赖性分析对于计算机科学中的几种应用至关重要。它在于安全信息流分析,约束时间分析等的本质。在文献中提出了各种分析以分析单个依赖性的结论。 Abadi等。 Al。,通过扩展Moggi的Monadic Metaguage,将其中几个结石统一为依赖关系核心微积分(DCC)。在过去的二十年中,DCC一直是依赖分析的基础框架。但是,尽管它取得了成功,但DCC仍有其局限性。首先,微积分的单一结合规则是非标准的,依靠辅助保护判决。其次,微积分是具有单一的性质的,无法捕获具有共生性质的依赖性分析,例如,戴维斯的绑定时间计算,$λ^{\ circ} $。在本文中,我们通过设计一种受类别理论的标准思想启发的替代依赖计算来解决这些局限性。我们的微积分本质上既是否则又是comonadic,又是DCC和$λ^{\ circ} $。我们的构造解释了根据标准分类概念的非标准绑定规则和DCC的保护判断。这也导致了一种新的技术,用于证明依赖分析的正确性。我们使用此技术为DCC和$λ^{\ circ} $提供替代的正确性证明。

Dependency analysis is vital to several applications in computer science. It lies at the essence of secure information flow analysis, binding-time analysis, etc. Various calculi have been proposed in the literature for analysing individual dependencies. Abadi et. al., by extending Moggi's monadic metalanguage, unified several of these calculi into the Dependency Core Calculus (DCC). DCC has served as a foundational framework for dependency analysis for the last two decades. However, in spite of its success, DCC has its limitations. First, the monadic bind rule of the calculus is nonstandard and relies upon an auxiliary protection judgement. Second, being of a monadic nature, the calculus cannot capture dependency analyses that possess a comonadic nature, for example, the binding-time calculus, $λ^{\circ}$, of Davies. In this paper, we address these limitations by designing an alternative dependency calculus that is inspired by standard ideas from category theory. Our calculus is both monadic and comonadic in nature and subsumes both DCC and $λ^{\circ}$. Our construction explains the nonstandard bind rule and the protection judgement of DCC in terms of standard categorical concepts. It also leads to a novel technique for proving correctness of dependency analysis. We use this technique to present alternative proofs of correctness for DCC and $λ^{\circ}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源