论文标题
基于BERT的合奏方法进行仇恨言论检测
BERT-based Ensemble Approaches for Hate Speech Detection
论文作者
论文摘要
随着在线社交媒体提供的沟通自由,仇恨言论越来越多地产生。这导致网络冲突影响个人和国家一级的社会生活。结果,仇恨的内容分类越来越需要在发送到社交网络之前过滤仇恨内容。本文着重于使用多个深层模型在社交媒体中对仇恨言论进行分类,这些模型通过整合了最近的基于变压器的语言模型,例如BERT和神经网络。为了提高分类性能,我们通过几种合奏技术进行了评估,包括软投票,最大价值,硬投票和堆叠。我们使用了三个可公开可用的Twitter数据集(Davidson,Hateval2019,OLID),以识别进攻性语言。我们融合了所有这些数据集以生成单个数据集(DHO数据集),该数据集在不同的标签上更加平衡,以执行多标签分类。我们的实验已在Davidson数据集和DHO Corpora上举行。后来给出了最佳的总体结果,尤其是F1宏观分数,即使它需要更多的资源(时间执行和内存)。这些实验表现出了良好的结果,尤其是整体模型,其中堆叠在Davidson数据集上的F1得分为97%,并且在DHO数据集上汇总合奏的77%。
With the freedom of communication provided in online social media, hate speech has increasingly generated. This leads to cyber conflicts affecting social life at the individual and national levels. As a result, hateful content classification is becoming increasingly demanded for filtering hate content before being sent to the social networks. This paper focuses on classifying hate speech in social media using multiple deep models that are implemented by integrating recent transformer-based language models such as BERT, and neural networks. To improve the classification performances, we evaluated with several ensemble techniques, including soft voting, maximum value, hard voting and stacking. We used three publicly available Twitter datasets (Davidson, HatEval2019, OLID) that are generated to identify offensive languages. We fused all these datasets to generate a single dataset (DHO dataset), which is more balanced across different labels, to perform multi-label classification. Our experiments have been held on Davidson dataset and the DHO corpora. The later gave the best overall results, especially F1 macro score, even it required more resources (time execution and memory). The experiments have shown good results especially the ensemble models, where stacking gave F1 score of 97% on Davidson dataset and aggregating ensembles 77% on the DHO dataset.