论文标题

Space-2:树木结构的半监督对比度预训练,以理解任务的对话框

SPACE-2: Tree-Structured Semi-Supervised Contrastive Pre-training for Task-Oriented Dialog Understanding

论文作者

He, Wanwei, Dai, Yinpei, Hui, Binyuan, Yang, Min, Cao, Zheng, Dong, Jianbo, Huang, Fei, Si, Luo, Li, Yongbin

论文摘要

具有对比性学习目标的预训练方法在对话了解任务中表现出了显着的成功。但是,当前的对比学习仅将自调查的对话样本视为正样本,并将所有其他对话样本视为负面样本,即使在语义上相关的对话框中,也会强制执行不同的表示。在本文中,我们提出了一个树木结构化的预训练的对话模型Space-2,该模型通过半监督对比度预训练从有限标记的对话框和大规模的无标记对话框中学习对话框表示。具体而言,我们首先定义一个通用的语义树结构(STS),以统一不同对话框数据集的注释模式,以便可以利用所有存储在所有标记数据中的丰富结构信息。然后,我们提出了一种新颖的多视图分数功能,以增加共享类似STS的所有可能对话框的相关性,并且在受监督的对比预训练期间仅推开其他完全不同的对话框。为了完全利用未标记的对话,还添加了基本的自我监督对比损失以完善学习的表示。实验表明,我们的方法可以在由七个数据集和四个流行的对话框理解任务组成的对话基准上实现新的最新结果。为了获得可重复性,我们在https://github.com/alibabaresearch/damo-convai/tree/main/main/space-2上发布代码和数据。

Pre-training methods with contrastive learning objectives have shown remarkable success in dialog understanding tasks. However, current contrastive learning solely considers the self-augmented dialog samples as positive samples and treats all other dialog samples as negative ones, which enforces dissimilar representations even for dialogs that are semantically related. In this paper, we propose SPACE-2, a tree-structured pre-trained conversation model, which learns dialog representations from limited labeled dialogs and large-scale unlabeled dialog corpora via semi-supervised contrastive pre-training. Concretely, we first define a general semantic tree structure (STS) to unify the inconsistent annotation schema across different dialog datasets, so that the rich structural information stored in all labeled data can be exploited. Then we propose a novel multi-view score function to increase the relevance of all possible dialogs that share similar STSs and only push away other completely different dialogs during supervised contrastive pre-training. To fully exploit unlabeled dialogs, a basic self-supervised contrastive loss is also added to refine the learned representations. Experiments show that our method can achieve new state-of-the-art results on the DialoGLUE benchmark consisting of seven datasets and four popular dialog understanding tasks. For reproducibility, we release the code and data at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/space-2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源