论文标题

用于多块结构化kirchhoff-love shells的等几何分析

Isogeometric analysis for multi-patch structured Kirchhoff-Love shells

论文作者

Farahat, Andrea, Verhelst, Hugo M., Kiendl, Josef, Kapl, Mario

论文摘要

我们提出了一种用于壳体结构的kirchhoff-love shell分析的等几何方法,该分析的几何形状由多个斑块组成,并且可能具有非凡的顶点,即具有价值的顶点,其价值不同于四个。所提出的iSOOGEMETIOMEMETRIT SHEL离散​​化是基于一方面基于一类通过一类特定的多块表面近似的近似,称为Analitionsit-santus-spate-syut-cutitubless-spate〜$ g^1 $ [1 $ [1],另一方面是基于全球$ C^1 $ C^1 $ -SMOOTH ISOMOTH ISOMOTH ISOOMETRIC MULTI-MULTI-MULTI-MULTI-PATCH SPAITS SPLINE SPLINE SPLINE SPACE [2]。我们将开发的技术在iSOODEMONETRIC KIRCHHOFF-LOVE SHELL公式中[3]中研究多块结构上的线性和非线性壳问题。因此,数值结果显示了我们方法对有效的壳体分析的巨大潜力,对如果不使用非凡的顶点就无法建模几何复杂的多块结构。

We present an isogeometric method for Kirchhoff-Love shell analysis of shell structures with geometries composed of multiple patches and which possibly possess extraordinary vertices, i.e. vertices with a valency different to four. The proposed isogeometric shell discretisation is based on the one hand on the approximation of the mid-surface by a particular class of multi-patch surfaces, called analysis-suitable~$G^1$ [1], and on the other hand on the use of the globally $C^1$-smooth isogeometric multi-patch spline space [2]. We use our developed technique within an isogeometric Kirchhoff-Love shell formulation [3] to study linear and non-linear shell problems on multi-patch structures. Thereby, the numerical results show the great potential of our method for efficient shell analysis of geometrically complex multi-patch structures which cannot be modeled without the use of extraordinary vertices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源