论文标题

浮游生物图像有效的无监督学习

Efficient Unsupervised Learning for Plankton Images

论文作者

Alfano, Paolo Didier, Rando, Marco, Letizia, Marco, Odone, Francesca, Rosasco, Lorenzo, Pastore, Vito Paolo

论文摘要

监测原位浮游生物种群是保护水生生态系统的基础。浮游生物微生物实际上很容易受到较小的环境扰动的影响,可以反映出随之而来的形态和动力学修饰。如今,高级自动或半自动采集系统的可用性已允许生产越来越多的浮游生物图像数据。由于大量获得的数据和浮游生物的数值,因此采用机器学习算法来对此类数据进行分类。为了应对这些挑战,我们提出了一种有效的无监督学习管道,以提供浮游生物微生物的准确分类。我们构建一组图像描述符,利用两步过程。首先,对预先训练的神经网络提取的功能进行了跨自动编码器(VAE)的培训。然后,我们将学习的潜在空间用作聚类的图像描述符。我们将方法与最先进的无监督方法进行了比较,其中一组预定义的手工特征用于浮游生物图像的聚类。所提出的管道优于我们分析中包含的所有浮游生物数据集的基准算法,提供了更好的图像嵌入性能。

Monitoring plankton populations in situ is fundamental to preserve the aquatic ecosystem. Plankton microorganisms are in fact susceptible of minor environmental perturbations, that can reflect into consequent morphological and dynamical modifications. Nowadays, the availability of advanced automatic or semi-automatic acquisition systems has been allowing the production of an increasingly large amount of plankton image data. The adoption of machine learning algorithms to classify such data may be affected by the significant cost of manual annotation, due to both the huge quantity of acquired data and the numerosity of plankton species. To address these challenges, we propose an efficient unsupervised learning pipeline to provide accurate classification of plankton microorganisms. We build a set of image descriptors exploiting a two-step procedure. First, a Variational Autoencoder (VAE) is trained on features extracted by a pre-trained neural network. We then use the learnt latent space as image descriptor for clustering. We compare our method with state-of-the-art unsupervised approaches, where a set of pre-defined hand-crafted features is used for clustering of plankton images. The proposed pipeline outperforms the benchmark algorithms for all the plankton datasets included in our analysis, providing better image embedding properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源