论文标题

减少了具有非线性近似的潜在动力学的模型,用于模型的预热火焰问题

Reduced models with nonlinear approximations of latent dynamics for model premixed flame problems

论文作者

Uy, Wayne Isaac Tan, Wentland, Christopher R., Huang, Cheng, Peherstorfer, Benjamin

论文摘要

有效地降低化学反应流的模型通常是具有挑战性的,因为它们的特征特征,例如流场中的尖锐梯度以及在各个时间和长度尺度上导致动力学在高维空间中发展的动力学。在这项工作中,我们表明在线自适应减少了模型,通过随着时间的流逝调整低维子空间来构建非线性近似值,可以预测具有与化学反应流中的属性相似的属性。子空间的适应性是由在线自适应经验插值方法驱动的,该方法对完整模型进行了稀疏的剩余评估,以计算子空间的低名级基础更新。具有预混合火焰模型问题的数值实验表明,基于在线自适应经验插值的模型还原准确地预测了远远超出训练制度的火焰动力学以及在传统静态降低模型的范围内,这些模型可以使降低的空间随着时间的流逝而固定,因此仅提供有意义的预测潜在动力学的线性近似。

Efficiently reducing models of chemically reacting flows is often challenging because their characteristic features such as sharp gradients in the flow fields and couplings over various time and length scales lead to dynamics that evolve in high-dimensional spaces. In this work, we show that online adaptive reduced models that construct nonlinear approximations by adapting low-dimensional subspaces over time can predict well latent dynamics with properties similar to those found in chemically reacting flows. The adaptation of the subspaces is driven by the online adaptive empirical interpolation method, which takes sparse residual evaluations of the full model to compute low-rank basis updates of the subspaces. Numerical experiments with a premixed flame model problem show that reduced models based on online adaptive empirical interpolation accurately predict flame dynamics far outside of the training regime and in regimes where traditional static reduced models, which keep reduced spaces fixed over time and so provide only linear approximations of latent dynamics, fail to make meaningful predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源