论文标题
半导体$δ$ - 层系统中的电导率和尺寸量化效果
Conductivity and size quantization effects in semiconductor $δ$-layer systems
论文作者
论文摘要
我们提出了两个半导体系统的导带结构和导电性能的开放系统量子力学3D真实空间研究,对于它们的超越摩尔和量子计算应用程序很有趣:硅和相应的$δ$ layer-layer-layer-layer-layer tunnel tunnel tunnel tunnel tunnel tunnecions in silicon和phosphorus $δ$层。为了评估尺寸量化对电导率的影响,我们考虑了两个主要情况:用于晶体管中的纳米级有限宽结构和无限范围的结构,其电气特性通常是实验性的。对于设备宽度$ W <10 $ 〜nm,量化效应很强,并且表明传播模式的数量不仅决定了电导率,而且决定了携带电流电子状态的独特空间分布。对于$ w> 10 $ 〜nm,量化效果实际上消失了,电导率趋向于无限宽的设备值。对于隧道连接,由于强大的传导带量化,预测两个不同的电导率状态。
We present an open-system quantum-mechanical 3D real-space study of the conduction band structure and conductive properties of two semiconductor systems, interesting for their beyond-Moore and quantum computing applications: phosphorus $δ$-layers in silicon and the corresponding $δ$-layer tunnel junctions. In order to evaluate size quantization effects on the conductivity, we consider two principal cases: nanoscale finite-width structures, used in transistors, and infinitely-wide structures, electrical properties of which are typically known experimentally. For devices widths $W<10$~nm, quantization effects are strong and it is shown that the number of propagating modes determines not only the conductivity, but the distinctive spatial distribution of the current-carrying electron states. For $W>10$~nm, the quantization effects practically vanish and the conductivity tends to the infinitely-wide device values. For tunnel junctions, two distinct conductivity regimes are predicted due to the strong conduction band quantization.