论文标题

使用基于梯度的B-Spline轨迹优化的视觉辅助无人机导航和避免动态障碍

Vision-aided UAV navigation and dynamic obstacle avoidance using gradient-based B-spline trajectory optimization

论文作者

Xu, Zhefan, Xiu, Yumeng, Zhan, Xiaoyang, Chen, Baihan, Shimada, Kenji

论文摘要

导航动态环境要求机器人生成无碰撞轨迹并积极避免移动障碍物。大多数以前的作品都基于一个单个地图表示形式设计路径计划算法,例如几何,占用率或ESDF地图。尽管他们在静态环境中表现出成功,但由于MAP表示的限制,这些方法无法同时可靠地处理静态和动态障碍。为了解决该问题,本文提出了一种利用机器人在机上视觉的基于梯度的B-Spline轨迹优化算法。深度视觉使机器人能够基于体素图以几何对象跟踪和表示动态对象。拟议的优化首先采用了基于圆形的指南算法,以近似避免静态障碍的成本和梯度。然后,使用视觉检测的移动对象,我们的后水平距离场同时用于防止动态碰撞。最后,采用迭代重新指导策略来生成无碰撞轨迹。模拟和物理实验证明,我们的方法可以实时运行以安全地浏览动态环境。我们的软件可在GitHub上作为开源软件包可用。

Navigating dynamic environments requires the robot to generate collision-free trajectories and actively avoid moving obstacles. Most previous works designed path planning algorithms based on one single map representation, such as the geometric, occupancy, or ESDF map. Although they have shown success in static environments, due to the limitation of map representation, those methods cannot reliably handle static and dynamic obstacles simultaneously. To address the problem, this paper proposes a gradient-based B-spline trajectory optimization algorithm utilizing the robot's onboard vision. The depth vision enables the robot to track and represent dynamic objects geometrically based on the voxel map. The proposed optimization first adopts the circle-based guide-point algorithm to approximate the costs and gradients for avoiding static obstacles. Then, with the vision-detected moving objects, our receding-horizon distance field is simultaneously used to prevent dynamic collisions. Finally, the iterative re-guide strategy is applied to generate the collision-free trajectory. The simulation and physical experiments prove that our method can run in real-time to navigate dynamic environments safely. Our software is available on GitHub as an open-source package.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源