论文标题

意见动力学的Sigmoidal限制信心模型中极化的出现

Emergence of polarization in a sigmoidal bounded-confidence model of opinion dynamics

论文作者

Brooks, Heather Z., Chodrow, Philip S., Porter, Mason A.

论文摘要

我们研究了具有有说服力的个体和狂热者的网络上连续时间观点动态的非线性界限模型(BCM)。该模型由标量$γ$参数化,该标量$γ$控制了光滑影响函数的陡度。这种影响功能编码节点对其他节点的意见的相对权重编码。当$γ= 0 $时,此影响功能会恢复泰勒的平均模型;当$γ\ rightarrow \ infty $时,影响函数会收敛到修改后的Hegselmann-Krause(HK)BCM的功能。但是,与经典的HK模型不同,对于任何有限的$γ$,我们的Sigmoidal界面信心模型(SBCM)都是平滑的。我们表明,当$γ$很小时,我们的SBCM的稳态集与泰勒模型的稳态集相似,并且一组稳态接近修改后的HK模型的稳态集的子集,为$γ\ rightArrow \ rightarrow \ rightarrow \ infty $。对于几个特殊的图形拓扑,我们对稳态空间的重要特征进行了分析描述。一个值得注意的结果是在社交网络中一个简单的回声室模型中,极化状态的稳定性与图形拓扑之间的封闭形式关系。由于我们的BCM的影响功能是平稳的,因此我们能够通过线性稳定性分析进行研究,这很难在BCMS中使用通常的不连续影响函数。

We study a nonlinear bounded-confidence model (BCM) of continuous-time opinion dynamics on networks with both persuadable individuals and zealots. The model is parameterized by a scalar $γ$, which controls the steepness of a smooth influence function. This influence function encodes the relative weights that nodes place on the opinions of other nodes. When $γ= 0$, this influence function recovers Taylor's averaging model; when $γ\rightarrow \infty$, the influence function converges to that of a modified Hegselmann--Krause (HK) BCM. Unlike the classical HK model, however, our sigmoidal bounded-confidence model (SBCM) is smooth for any finite $γ$. We show that the set of steady states of our SBCM is qualitatively similar to that of the Taylor model when $γ$ is small and that the set of steady states approaches a subset of the set of steady states of a modified HK model as $γ\rightarrow \infty$. For several special graph topologies, we give analytical descriptions of important features of the space of steady states. A notable result is a closed-form relationship between the stability of a polarized state and the graph topology in a simple model of echo chambers in social networks. Because the influence function of our BCM is smooth, we are able to study it with linear stability analysis, which is difficult to employ with the usual discontinuous influence functions in BCMs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源