论文标题

Frans:时间序列预测的自动功能提取

FRANS: Automatic Feature Extraction for Time Series Forecasting

论文作者

Chernikov, Alexey, Tan, Chang Wei, Montero-Manso, Pablo, Bergmeir, Christoph

论文摘要

特征提取方法有助于降低维度并捕获相关信息。在时间序列预测(TSF)中,功能可以用作辅助信息,以实现更好的准确性。传统上,TSF中使用的功能是手工制作的,需要域知识和重要的数据工程工作。在这项研究中,我们首先介绍了静态和动态功能的概念,然后使我们能够开发自主功能,以检索不需要域知识的静态特征(FRAN)自动回归网络(FRAN)。该方法基于CNN分类器,该分类器经过训练,可以为每个系列创建一个集体和唯一的类表示,或者在该系列的部分中,或者(如果可以使用类标签),则可以从一组同一类中。它允许以相似的行为区分序列,但要从不同的类别中进行区分,并使从分类器提取的特征具有最大歧视性。我们探讨了我们功能的解释性,并评估预测元学习环境中该方法的预测能力。我们的结果表明,在大多数情况下,我们的功能会提高准确性。一旦训练了我们的方法,就会创建比统计方法快的数量级。

Feature extraction methods help in dimensionality reduction and capture relevant information. In time series forecasting (TSF), features can be used as auxiliary information to achieve better accuracy. Traditionally, features used in TSF are handcrafted, which requires domain knowledge and significant data-engineering work. In this research, we first introduce a notion of static and dynamic features, which then enables us to develop our autonomous Feature Retrieving Autoregressive Network for Static features (FRANS) that does not require domain knowledge. The method is based on a CNN classifier that is trained to create for each series a collective and unique class representation either from parts of the series or, if class labels are available, from a set of series of the same class. It allows to discriminate series with similar behaviour but from different classes and makes the features extracted from the classifier to be maximally discriminatory. We explore the interpretability of our features, and evaluate the prediction capabilities of the method within the forecasting meta-learning environment FFORMA. Our results show that our features lead to improvement in accuracy in most situations. Once trained our approach creates features orders of magnitude faster than statistical methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源