论文标题
基于事件的人姿势估计的时间密集连接的复发网络
A Temporal Densely Connected Recurrent Network for Event-based Human Pose Estimation
论文作者
论文摘要
事件摄像机是一种新兴的生物启发的视觉传感器,它报告的亮度不同步变化。它具有高动态范围,高速响应和低功率预算的明显优势,使其能够在不受控制的环境中最好地捕获本地动作。这促使我们释放了事件摄像机进行人姿势估计的潜力,因为很少探索人类姿势估计。但是,由于新的范式从基于框架的传统摄像机转移,时间间隔中的事件信号包含非常有限的信息,因为事件摄像机只能捕获移动的身体部位并忽略那些静态的身体部位,从而导致某些部分在时间间隔中不完整甚至消失。本文提出了一种新型的密集连接的复发架构,以解决不完整信息的问题。通过这种经常性的体系结构,我们可以明确对跨时间步骤的顺序几何一致性进行明确建模,以从以前的帧中积累信息,以恢复整个人体,从而从事件数据中实现稳定且准确的人类姿势估计。此外,为了更好地评估我们的模型,我们收集了一个基于人类姿势注释的大型多模式事件数据集,该数据集是迄今为止最具挑战性的姿势注释。两个公共数据集和我们自己的数据集的实验结果证明了我们方法的有效性和强度。代码可以在线提供,以促进未来的研究。
Event camera is an emerging bio-inspired vision sensors that report per-pixel brightness changes asynchronously. It holds noticeable advantage of high dynamic range, high speed response, and low power budget that enable it to best capture local motions in uncontrolled environments. This motivates us to unlock the potential of event cameras for human pose estimation, as the human pose estimation with event cameras is rarely explored. Due to the novel paradigm shift from conventional frame-based cameras, however, event signals in a time interval contain very limited information, as event cameras can only capture the moving body parts and ignores those static body parts, resulting in some parts to be incomplete or even disappeared in the time interval. This paper proposes a novel densely connected recurrent architecture to address the problem of incomplete information. By this recurrent architecture, we can explicitly model not only the sequential but also non-sequential geometric consistency across time steps to accumulate information from previous frames to recover the entire human bodies, achieving a stable and accurate human pose estimation from event data. Moreover, to better evaluate our model, we collect a large scale multimodal event-based dataset that comes with human pose annotations, which is by far the most challenging one to the best of our knowledge. The experimental results on two public datasets and our own dataset demonstrate the effectiveness and strength of our approach. Code can be available online for facilitating the future research.