论文标题
部分可观测时空混沌系统的无模型预测
Domain Adversarial Training on Conditional Variational Auto-Encoder for Controllable Music Generation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The variational auto-encoder has become a leading framework for symbolic music generation, and a popular research direction is to study how to effectively control the generation process. A straightforward way is to control a model using different conditions during inference. However, in music practice, conditions are usually sequential (rather than simple categorical labels), involving rich information that overlaps with the learned representation. Consequently, the decoder gets confused about whether to "listen to" the latent representation or the condition, and sometimes just ignores the condition. To solve this problem, we leverage domain adversarial training to disentangle the representation from condition cues for better control. Specifically, we propose a condition corruption objective that uses the representation to denoise a corrupted condition. Minimized by a discriminator and maximized by the VAE encoder, this objective adversarially induces a condition-invariant representation. In this paper, we focus on the task of melody harmonization to illustrate our idea, while our methodology can be generalized to other controllable generative tasks. Demos and experiments show that our methodology facilitates not only condition-invariant representation learning but also higher-quality controllability compared to baselines.