论文标题

具有乘法噪声的基于代理模型的意见动力学的反馈循环

Feedback Loops in Opinion Dynamics of Agent-Based Models with Multiplicative Noise

论文作者

Conrad, Natasa Djurdjevac, Köppl, Jonas, Djurdjevac, Ana

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We introduce an agent-based model for co-evolving opinion and social dynamics, under the influence of multiplicative noise. In this model, every agent is characterized by a position in a social space and a continuous opinion state variable. Agents' movements are governed by positions and opinions of other agents and similarly, the opinion dynamics is influenced by agents' spatial proximity and their opinion similarity. Using numerical simulations and formal analysis, we study this feedback loop between opinion dynamics and mobility of agents in a social space. We investigate the behavior of this ABM in different regimes and explore the influence of various factors on appearance of emerging phenomena such as group formation and opinion consensus. We study the empirical distribution and in the limit of infinite number of agents we derive a corresponding reduced model given by a partial differential equation (PDE). Finally, using numerical examples we show that a resulting PDE model is a good approximation of the original ABM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源