论文标题

拉普拉斯动力学的可控性和结构可控性

The Controllability and Structural Controllability of Laplacian Dynamics

论文作者

Qu, Jijun, Ji, Zhijian, Liu, Yungang, Lin, Chong

论文摘要

在本文中,研究了两个方案下的经典可控性和结构可控性。为了获得经典的可控性,Laplacian Matrix $ L^*$的特征值零的多样性被证明取决于零圆,相同的节点和相反对的零圆的总和,而laplacian $ L $ laplacian $ L $始终具有绝对形式的垂直份。对于固定的结构平衡拓扑,即使在与$ L $的相应协议下选择拮抗权重不同,可控子空间也是不变的。对于从扎根于单个领导者的星形扩展的图形,可控子空间的维度为两个与$ l^*$相关的协议。另外,当且仅当连接没有无法接近节点的拓扑时,该系统在两个协议下都可以在结构上控制。作为结构可控性的增强案例,强大的结构可控性要求该系统可控制任何权重。父亲节点与子节点之间的联系会影响强大的结构可控性,因为它决定了父亲节点的控制信息的线性关系。这一发现是在两个协议下而不是复杂网络下的多代理系统强大结构可控性建立足够的条件的主要因素,大约后者的结果已经很丰富。

In this paper, classic controllability and structural controllability under two protocols are investigated. For classic controllability, the multiplicity of eigenvalue zero of general Laplacian matrix $L^*$ is shown to be determined by the sum of the numbers of zero circles, identical nodes and opposite pairs, while it is always simple for the Laplacian $L$ with diagonal entries in absolute form. For a fixed structurally balanced topology, the controllable subspace is proved to be invariant even if the antagonistic weights are selected differently under the corresponding protocol with $L$. For a graph expanded from a star graph rooted from a single leader, the dimension of controllable subspace is two under the protocol associated with $L^*$. In addition, the system is structurally controllable under both protocols if and only if the topology without unaccessible nodes is connected. As a reinforcing case of structural controllability, strong structural controllability requires the system to be controllable for any choice of weights. The connection between father nodes and child nodes affects strong structural controllability because it determines the linear relationship of the control information from father nodes. This discovery is a major factor in establishing the sufficient conditions on strong structural controllability for multi-agent systems under both protocols, rather than for complex networks, about latter results are already abundant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源