论文标题

线性转换用于跨语言分析

Linear Transformations for Cross-lingual Sentiment Analysis

论文作者

Přibáň, Pavel, Šmíd, Jakub, Mištera, Adam, Král, Pavel

论文摘要

本文涉及捷克,英语和法语语言的跨语言分析。我们使用五个线性转换与LSTM和CNN基于CNN的分类器进行零射击跨语性分类。我们比较了单个转换的性能,此外,我们与现有的类似伯特的模型面对基于转换的方法。我们表明,与单语言分类不同的是,来自目标域的预训练的嵌入对于改善跨语性分类结果至关重要,在单语分类中,效果并非如此独特。

This paper deals with cross-lingual sentiment analysis in Czech, English and French languages. We perform zero-shot cross-lingual classification using five linear transformations combined with LSTM and CNN based classifiers. We compare the performance of the individual transformations, and in addition, we confront the transformation-based approach with existing state-of-the-art BERT-like models. We show that the pre-trained embeddings from the target domain are crucial to improving the cross-lingual classification results, unlike in the monolingual classification, where the effect is not so distinctive.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源