论文标题

重新审视人群计数:最新的,趋势和未来的观点

Revisiting Crowd Counting: State-of-the-art, Trends, and Future Perspectives

论文作者

Khan, Muhammad Asif, Menouar, Hamid, Hamila, Ridha

论文摘要

人群计数是公共场所情境意识的有效工具。使用图像和视频进行自动人群计数是一个有趣但充满挑战的问题,在计算机视觉中引起了极大的关注。在过去的几年中,已经开发了各种深度学习方法来实现最先进的表现。随着时间的流逝,这些方法在许多方面发生了变化,例如模型架构,输入管道,学习范式,计算复杂性和准确性提高等。在本文中,我们对人群计数领域中最重要的贡献进行了系统的全面评论。尽管对该主题的调查很少,但我们的调查是最新的,并且在几个方面都不同。首先,它通过模型架构,学习方法(即损失功能)和评估方法(即评估指标)对最重要的贡献进行了更有意义的分类。我们选择了著名和独特的作品,并排除了类似的作品。我们还通过基准数据集对众所周知的人群计数模型进行分类。我们认为,这项调查可能是新手研究人员了解随着时间的推移和当前最新技术的逐步发展和贡献的好资源。

Crowd counting is an effective tool for situational awareness in public places. Automated crowd counting using images and videos is an interesting yet challenging problem that has gained significant attention in computer vision. Over the past few years, various deep learning methods have been developed to achieve state-of-the-art performance. The methods evolved over time vary in many aspects such as model architecture, input pipeline, learning paradigm, computational complexity, and accuracy gains etc. In this paper, we present a systematic and comprehensive review of the most significant contributions in the area of crowd counting. Although few surveys exist on the topic, our survey is most up-to date and different in several aspects. First, it provides a more meaningful categorization of the most significant contributions by model architectures, learning methods (i.e., loss functions), and evaluation methods (i.e., evaluation metrics). We chose prominent and distinct works and excluded similar works. We also sort the well-known crowd counting models by their performance over benchmark datasets. We believe that this survey can be a good resource for novice researchers to understand the progressive developments and contributions over time and the current state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源