论文标题
II型双场理论超空间
Type II Double Field Theory in Superspace
论文作者
论文摘要
我们在超空间中探索II型超对称双场理论。双重超声层是正交组OSP(10,10 | 64)的元素,它也控制着广义超甲状腺素的结构。与骨双重场理论不同,必须从双Lorentz组中增强局部切线空间,以消除超级主体的非物理组件并定义协变量扭转和曲率张量。这导致了本地切线空间对称性的无限层次结构,该层次连接到超级马克斯韦$ _ \ infty $代数。 II型的一个新功能是Ramond-Ramond扇区,可以编码为正骨旋转器(编码常规超空间中的Super Pforms的复合体)。它的协变野战力比斯皮诺本身是Supervielbein的一部分。我们通过尺寸二进行了简洁的讨论Bianchi身份,并展示了如何恢复II型DFT的成分超对称转换。此外,我们还展示了如何通过固定量规定恢复II型超空间的民主制定。
We explore type II supersymmetric double field theory in superspace. The double supervielbein is an element of the orthosymplectic group OSp(10,10|64), which also governs the structure of generalized superdiffeomorphisms. Unlike bosonic double field theory, the local tangent space must be enhanced from the double Lorentz group in order to eliminate unphysical components of the supervielbein and to define covariant torsion and curvature tensors. This leads to an infinite hierarchy of local tangent space symmetries, which are connected to the super-Maxwell$_\infty$ algebra. A novel feature of type II is the Ramond-Ramond sector, which can be encoded as an orthosymplectic spinor (encoding the complex of super p-forms in conventional superspace). Its covariant field strength bispinor itself appears as a piece of the supervielbein. We provide a concise discussion of the superspace Bianchi identities through dimension two and show how to recover the component supersymmetry transformations of type II DFT. In addition, we show how the democratic formulation of type II superspace may be recovered by gauge-fixing.