论文标题

具有大量控制的多物种传输系统的经典解决方案的全球存在和统一的界限

Global existence and uniform boundedness of the classical solutions for the system of multi-species transport with mass control

论文作者

Ghosh, Nibedita, Mahato, Hari Shankar

论文摘要

这项工作的目的是为高度非线性反应扩散方程的系统中的所有维度建立非负经典解决方案的全球存在。我们解决了不同扩散系数的案例和与非均匀的诺伊曼边界条件的可逆反应系统。假定该系统仅满足质量控制条件,并具有具有任意增长的局部Lipschitz非线性。这项工作的关键方面是,我们没有假设扩散系数彼此接近。我们利用双重性方法和热运算符的正则化来得出结果。我们还说明了解决方案的全局时间范围。该应用包括下水道管道或下水道管中硫酸盐腐蚀的混凝土腐蚀。

The goal of this work is to establish the global existence of nonnegative classical solutions in all dimensions for a system of highly nonlinear reaction-diffusion equations. We address the case for different diffusion coefficients and the system of reversible reactions with non-homogeneous Neumann boundary conditions. The systems are assumed to satisfy only the mass control condition and to have locally Lipschitz nonlinearities with arbitrary growth. The key aspect of this work is that we didn't assume that the diffusion coefficients are close to each other. We utilize the duality method and the regularization of the heat operator to derive the result. We also illustrate the global in time bounds for the solutions. The application includes concrete corrosion in sewer pipes or sulfate corrosion in sewer pipes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源