论文标题

基于截短的奇异值分解算法优化算法的低维过滤器阵列微光谱仪的光谱重建研究的研究

Research on the spectral reconstruction of a low-dimensional filter array micro-spectrometer based on a truncated singular value decomposition-convex optimization algorithm

论文作者

Zhang, Jiakun, Zhang, Liu, Song, Ying, Zheng, Yan

论文摘要

目前,微型光谱仪的工程主要面临三个问题:检测器前端的过滤器数量与光谱重建精度之间的不匹配;缺乏稳定的光谱重建算法;缺乏适合工程的光谱重建评估方法。因此,基于20组过滤器,本文通过K-均值算法和粒子群群算法进行了分类并优化了滤波器阵列,并在不同的矩阵尺寸下获得了最佳滤波器组合。然后,使用截断的奇异值分解符号优化算法用于高精度光谱重建,并描述了两个典型目标光谱的详细光谱重建过程。在光谱评估方面,由于在光谱仪工作过程中检测到的目标的强随机性,无法获得目标光谱的标准值。因此,我们第一次采用了多组数据集的联合交叉验证方法进行光谱评估。结果表明,当对重建的正或负2代码值的随机误差多次应用时,重建曲线之间的光谱角余弦值将超过0.995,这证明该算法下的光谱重建具有很高的稳定性。同时,光谱重建曲线和标准曲线的频谱角余弦值可以达到0.99以上,这意味着它实现了高精度光谱重建效果。本文建立了基于适用于工程应用的截短的奇异值优化的高精度光谱重建算法,该算法适用于工程应用,为工程学的科学研究价值提供了针对微光谱仪的工程应用的重要科学研究价值。

Currently, the engineering of miniature spectrometers mainly faces three problems: the mismatch between the number of filters at the front end of the detector and the spectral reconstruction accuracy; the lack of a stable spectral reconstruction algorithm; and the lack of a spectral reconstruction evaluation method suitable for engineering. Therefore, based on 20 sets of filters, this paper classifies and optimizes the filter array by the K-means algorithm and particle swarm algorithm, and obtains the optimal filter combination under different matrix dimensions. Then, the truncated singular value decomposition-convex optimization algorithm is used for high-precision spectral reconstruction, and the detailed spectral reconstruction process of two typical target spectra is described. In terms of spectral evaluation, due to the strong randomness of the target detected during the working process of the spectrometer, the standard value of the target spectrum cannot be obtained. Therefore, for the first time, we adopt the method of joint cross-validation of multiple sets of data for spectral evaluation. The results show that when the random error of positive or negative 2 code values is applied multiple times for reconstruction, the spectral angle cosine value between the reconstructed curves becomes more than 0.995, which proves that the spectral reconstruction under this algorithm has high stability. At the same time, the spectral angle cosine value of the spectral reconstruction curve and the standard curve can reach above 0.99, meaning that it realizes a high-precision spectral reconstruction effect. A high-precision spectral reconstruction algorithm based on truncated singular value-convex optimization, which is suitable for engineering applications, is established in this paper, providing important scientific research value for the engineering application of micro-spectrometers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源