论文标题
一维施罗宾格方程的非扰动溶液描述了Sommerfeld模型金属光发射的振荡场
Non-perturbative Solution of the 1d Schrodinger Equation Describing Photoemission from a Sommerfeld model Metal by an Oscillating Field
论文作者
论文摘要
我们非扰动地分析一维schrödinger方程,描述了通过经典振荡电场从模型金属表面发射的电子。将金属放入半个空间$ x \ leqslant 0 $,系统的schrödinger方程为$ i \partial_tψ= - \ frac12 \ partial_x^2ψ+θ(x)(u-e x \cosΩt) $ u> 0 $是有效的限制电位(我们选择单位,因此$ m = e = \ hbar = 1 $)。外部电场和频率$ω$的幅度$ e $是任意的。我们证明了该方程的经典解决方案的存在和独特性,用于一般初始条件$ψ(x,0)= f(x)$,$ x \ in \ mathbb r $。当初始条件以$ l^2 $为单位时,Evolution是统一的,并且波函数在任何固定的$ x $ as $ t \ to \ to \ infty $下为零。为了证明这一点,我们证明了一种愤怒的定理,并证明了胶质操作员的离散频谱是空的。为了获得正电子电流,我们认为非左侧的非$ l^2 $初始条件。光束部分反映并部分用于所有$ t> 0 $。为此,我们表明,大型$ t $中的解决方案方法限制了满足Faisal等正式得出的无限方程的周期性状态。 al。由于汉密尔顿(Hamiltonian)的许多病理特征(其中在物理和空间傅立叶域中无限制),现有的方法证明了这种结果,因此我们引入了新的,更一般的结果。实际解决方案表现出非常复杂的行为。当频率通过阈值$ω=ω_c$时,电流显示出急剧的增加,并取决于$ω_c$,具体取决于电场的强度。对于小$ e $,$ω_c$表示经典光电效应的阈值。
We analyze non-perturbatively the one-dimensional Schrödinger equation describing the emission of electrons from a model metal surface by a classical oscillating electric field. Placing the metal in the half-space $x\leqslant 0$, the Schrödinger equation of the system is $i\partial_tψ=-\frac12\partial_x^2ψ+Θ(x) (U-E x \cosωt)ψ$, $t>0$, $x\in\mathbb R$, where $Θ(x)$ is the Heaviside function and $U>0$ is the effective confining potential (we choose units so that $m=e=\hbar=1$). The amplitude $E$ of the external electric field and the frequency $ω$ are arbitrary. We prove existence and uniqueness of classical solutions of this equation for general initial conditions $ψ(x,0)=f(x)$, $x\in\mathbb R$. When the initial condition is in $L^2$ the evolution is unitary and the wave function goes to zero at any fixed $x$ as $t\to\infty$. To show this we prove a RAGE type theorem and show that the discrete spectrum of the quasienergy operator is empty. To obtain positive electron current we consider non-$L^2$ initial conditions containing an incoming beam from the left. The beam is partially reflected and partially transmitted for all $t>0$. For these we show that the solution approaches in the large $t$ limit a periodic state that satisfies an infinite set of equations formally derived by Faisal, et. al. Due to a number of pathological features of the Hamiltonian (among which unboundedness in the physical as well as the spatial Fourier domain) the existing methods to prove such results do not apply, and we introduce new, more general ones. The actual solution exhibits a very complex behavior. It shows a steep increase in the current as the frequency passes a threshold value $ω=ω_c$, with $ω_c$ depending on the strength of the electric field. For small $E$, $ω_c$ represents the threshold in the classical photoelectric effect.