论文标题

通过近端拆分(横幅hypersara)在无线电干涉仪中平行的成像:ii。代码和实际数据概念证明

Parallel faceted imaging in radio interferometry via proximal splitting (Faceted HyperSARA): II. Code and real data proof of concept

论文作者

Thouvenin, Pierre-Antoine, Dabbech, Arwa, Jiang, Ming, Abdulaziz, Abdullah, Thiran, Jean-Philippe, Jackson, Adrian, Wiaux, Yves

论文摘要

在同伴论文中,已在合成数据上引入并验证了一种称为式hypersara的无线电干涉法的宽带成像技术。基于最近的Hypersara方法的基础,Hypersara的刻度利用了基本偶发性前向后背算法固有的分裂功能,以分解图像重建在多个时空光谱方面上。该方法允许将复杂的正则化注入成像过程中,同时与Hypersara相比提供了额外的并行化灵活性。本文引入了新的算法功能来解决真实数据集,该功能是在GitHub上提供的完全刚起步的MATLAB成像库的一部分实现的。提出了大规模的概念验证证明,以与最先进的制度相比,在新的数据和参数量表制度中验证了跨越的Hypersara。考虑了从7.4 GB的VLA数据重建Cyg A的15 GB宽带图像,在HPC系统上利用1440个CPU核心约9小时。进行的实验说明了所提出的方法在实际数据上的重建性能,利用新功能来利用已知方向依赖性效应(DDES),以实现测量算子的准确模型,以及有效的噪声水平,核算不完美的校准。他们还证明,当与进一步的维度降低功能结合使用时,刻面Hypersara可以使用仅91 CPU核心从相同数据中恢复3.6 GB的CYG A图像,持续39小时。在这种情况下,与WSCLEAN软件的最先进的基于清洁的算法相比,提出的方法可提供出色的重建质量。

In a companion paper, a faceted wideband imaging technique for radio interferometry, dubbed Faceted HyperSARA, has been introduced and validated on synthetic data. Building on the recent HyperSARA approach, Faceted HyperSARA leverages the splitting functionality inherent to the underlying primal-dual forward-backward algorithm to decompose the image reconstruction over multiple spatio-spectral facets. The approach allows complex regularization to be injected into the imaging process while providing additional parallelization flexibility compared to HyperSARA. The present paper introduces new algorithm functionalities to address real datasets, implemented as part of a fully fledged MATLAB imaging library made available on Github. A large scale proof-of-concept is proposed to validate Faceted HyperSARA in a new data and parameter scale regime, compared to the state-of-the-art. The reconstruction of a 15 GB wideband image of Cyg A from 7.4 GB of VLA data is considered, utilizing 1440 CPU cores on a HPC system for about 9 hours. The conducted experiments illustrate the reconstruction performance of the proposed approach on real data, exploiting new functionalities to leverage known direction-dependent effects (DDEs), for an accurate model of the measurement operator, and an effective noise level accounting for imperfect calibration. They also demonstrate that, when combined with a further dimensionality reduction functionality, Faceted HyperSARA enables the recovery of a 3.6 GB image of Cyg A from the same data using only 91 CPU cores for 39 hours. In this setting, the proposed approach is shown to provide a superior reconstruction quality compared to the state-of-the-art wideband CLEAN-based algorithm of the WSClean software.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源