论文标题

计算最佳分配策略以实现

Computing the optimal distributionally-robust strategy to commit to

论文作者

Ananthanarayanan, Sai Mali, Kroer, Christian

论文摘要

Stackelberg游戏模型,领导者致力于制定策略,而追随者最能做出响应,它发现了广泛的应用程序,尤其是针对安全问题。在安全环境中,目标是为了保护某些资产,领导者要计算一个最佳策略。在这些应用中的许多应用中,追随者实用程序模型的参数尚不确定。分布式优化的优化通过允许在可能的模型参数上进行分配来解决此问题,而该分布来自一组可能的分布。目的是最大程度地提高预期的效用,相对于最差的分布。我们启动了分配稳定模型的研究,以计算最佳策略。我们考虑了对追随者公用事业模型的不确定性的正常形式游戏的情况。我们的主要理论结果是表明,在各种不确定性模型中,始终存在分布稳定的Stackelberg平衡。对于一组有限的追随者实用程序函数,我们提出了两种算法,用于计算使用数学程序的分布强的Stackelberg平衡(DRSSE)。接下来,在一般情况下,存在无限数量的可能的追随者实用程序函数,并且不确定性在有限支撑的名义分布周围由沃斯坦(Wasserstein)球表示,我们提供了一种基于增量的混合组合编程的算法来计算最佳分布分布策略。实验证实了我们在古典Stackelberg游戏中算法的障碍性,这表明我们的进近缩放到中型游戏。

The Stackelberg game model, where a leader commits to a strategy and the follower best responds, has found widespread application, particularly to security problems. In the security setting, the goal is for the leader to compute an optimal strategy to commit to, in order to protect some asset. In many of these applications, the parameters of the follower utility model are not known with certainty. Distributionally-robust optimization addresses this issue by allowing a distribution over possible model parameters, where this distribution comes from a set of possible distributions. The goal is to maximize the expected utility with respect to the worst-case distribution. We initiate the study of distributionally-robust models for computing the optimal strategy to commit to. We consider the case of normal-form games with uncertainty about the follower utility model. Our main theoretical result is to show that a distributionally-robust Stackelberg equilibrium always exists across a wide array of uncertainty models. For the case of a finite set of possible follower utility functions we present two algorithms to compute a distributionally-robust strong Stackelberg equilibrium (DRSSE) using mathematical programs. Next, in the general case where there is an infinite number of possible follower utility functions and the uncertainty is represented by a Wasserstein ball around a finitely-supported nominal distribution, we give an incremental mixed-integer-programming-based algorithm for computing the optimal distributionally-robust strategy. Experiments substantiate the tractability of our algorithm on a classical Stackelberg game, showing that our approach scales to medium-sized games.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源