论文标题

熵的统计特性来自顺序模式

Statistical Properties of the Entropy from Ordinal Patterns

论文作者

Chagas, Eduarda T. C., Frery, Alejandro. C., Gambini, Juliana, Lucini, Magdalena M., Ramos, Heitor S., Rey, Andrea A.

论文摘要

统计分析顺序模式的统计分析的最终目的是表征它们引起的特征的分布。特别是,了解对大型时间序列模型的对熵统计复杂性的联合分布将允许迄今无法使用的统计测试。在这个方向上工作时,我们表征了Shannon经验的渐近分布的任何模型,而真正的归一化熵既不为零,也不是一个。我们从中心极限定理(假设大时间序列),多元增量方法和其平均值的三阶校正获得了渐近分布。我们讨论了其他结果(精确,一阶校正和二阶校正)的适用性,内容涉及其准确性和数值稳定性。在建立有关香农熵的测试统计数据的一般框架中,我们提出了双边测试,该测试验证是否有足够的证据拒绝以下假设,即两个信号产生了具有相同Shannon熵的序数模式。我们将此双边测试应用于来自三个城市(都柏林,爱丁堡和迈阿密)的每日最高温度时间序列,并获得了明智的结果。

The ultimate purpose of the statistical analysis of ordinal patterns is to characterize the distribution of the features they induce. In particular, knowing the joint distribution of the pair Entropy-Statistical Complexity for a large class of time series models would allow statistical tests that are unavailable to date. Working in this direction, we characterize the asymptotic distribution of the empirical Shannon's Entropy for any model under which the true normalized Entropy is neither zero nor one. We obtain the asymptotic distribution from the Central Limit Theorem (assuming large time series), the Multivariate Delta Method, and a third-order correction of its mean value. We discuss the applicability of other results (exact, first-, and second-order corrections) regarding their accuracy and numerical stability. Within a general framework for building test statistics about Shannon's Entropy, we present a bilateral test that verifies if there is enough evidence to reject the hypothesis that two signals produce ordinal patterns with the same Shannon's Entropy. We applied this bilateral test to the daily maximum temperature time series from three cities (Dublin, Edinburgh, and Miami) and obtained sensible results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源