论文标题
配置:探索话语级的语音人物
ConFiguRe: Exploring Discourse-level Chinese Figures of Speech
论文作者
论文摘要
言语的数字,例如隐喻和讽刺,在文学作品和口语对话中无处不在。这对自然语言理解构成了巨大的挑战,因为语音的数字通常偏离表面上表达更深层次的语义含义的含义。先前的研究强调了数字的文学方面,很少从计算语言学的观点提供全面的探索。在本文中,我们首先提出了形象单位的概念,该单元是人物的载体。然后,我们选择中文中常用的12种类型的数字,并构建中文语料库以进行上下文化的图形识别(配置)。与以前的令牌级别或句子级别对应物不同,配置旨在从话语级别的上下文中提取象征性单元,并将象征性单元分类为正确的图类型。在配置时,设计了三个任务,即图形提取,图类型分类和图形识别,并使用最新技术来实现基准。我们进行彻底的实验,并表明这三个任务对现有模型都充满挑战,因此需要进一步研究。我们的数据集和代码可在https://github.com/pku-tangent/configure上公开获取。
Figures of speech, such as metaphor and irony, are ubiquitous in literature works and colloquial conversations. This poses great challenge for natural language understanding since figures of speech usually deviate from their ostensible meanings to express deeper semantic implications. Previous research lays emphasis on the literary aspect of figures and seldom provide a comprehensive exploration from a view of computational linguistics. In this paper, we first propose the concept of figurative unit, which is the carrier of a figure. Then we select 12 types of figures commonly used in Chinese, and build a Chinese corpus for Contextualized Figure Recognition (ConFiguRe). Different from previous token-level or sentence-level counterparts, ConFiguRe aims at extracting a figurative unit from discourse-level context, and classifying the figurative unit into the right figure type. On ConFiguRe, three tasks, i.e., figure extraction, figure type classification and figure recognition, are designed and the state-of-the-art techniques are utilized to implement the benchmarks. We conduct thorough experiments and show that all three tasks are challenging for existing models, thus requiring further research. Our dataset and code are publicly available at https://github.com/pku-tangent/ConFiguRe.