论文标题

自动后编辑的实证研究

An Empirical Study of Automatic Post-Editing

论文作者

Zhang, Xu, Wan, Xiaojun

论文摘要

自动编辑(APE)旨在通过自动纠正机器翻译输出中的错误来减少手动后编辑工作。由于人类注销的培训数据数量有限,数据稀缺是所有猿类系统所面临的主要挑战之一。为了减轻缺乏真正的培训数据,大多数当前的猿类系统采用数据增强方法来生成大规模的人造语料库。鉴于APE数据增强的重要性,我们分别研究了人工语料库的构建方法和人工数据域对猿类模型性能的影响。此外,猿类的难度在不同的机器翻译(MT)系统之间有所不同。我们在困难的猿数据集中研究了最先进的猿模型的输出,以分析现有的猿类系统中的问题。首先,我们发现1)具有高质量源文本和机器翻译文本的人工语料库更有效地改善了猿类模型的性能; 2)内域人工训练数据可以更好地改善猿类模型的性能,而无关紧要的外域数据实际上会干扰该模型; 3)现有的APE模型与包含长源文本或高质量机器翻译文本的案例斗争; 4)最先进的猿类模型在语法和语义添加问题上很好地工作,但是输出容易出现实体和语义遗漏误差。

Automatic post-editing (APE) aims to reduce manual post-editing efforts by automatically correcting errors in machine-translated output. Due to the limited amount of human-annotated training data, data scarcity is one of the main challenges faced by all APE systems. To alleviate the lack of genuine training data, most of the current APE systems employ data augmentation methods to generate large-scale artificial corpora. In view of the importance of data augmentation in APE, we separately study the impact of the construction method of artificial corpora and artificial data domain on the performance of APE models. Moreover, the difficulty of APE varies between different machine translation (MT) systems. We study the outputs of the state-of-art APE model on a difficult APE dataset to analyze the problems in existing APE systems. Primarily, we find that 1) Artificial corpora with high-quality source text and machine-translated text more effectively improve the performance of APE models; 2) In-domain artificial training data can better improve the performance of APE models, while irrelevant out-of-domain data actually interfere with the model; 3) Existing APE model struggles with cases containing long source text or high-quality machine-translated text; 4) The state-of-art APE model works well on grammatical and semantic addition problems, but the output is prone to entity and semantic omission errors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源