论文标题

液滴撞击和加热柱上的Leidenfrost动力学

Droplet impact and Leidenfrost dynamics on a heated post

论文作者

Li, Junhui, Weisensee, Patricia

论文摘要

这项研究在实验中探索了影响加热毫米柱的液滴的流体分解和leidenfrost动力学。使用高速光学和红外成像,我们研究了液滴寿命,分解和沸腾模式,以及不同底物的冷却性能。与平坦的基板相比,柱底物导致液滴寿命较短,而leidenfrost温度则高20°C,这是由于沿邮政高度的混合沸腾模式和额外的固定固定。对于低于Leidenfrost点的温度,在核沸腾方案中,后底物还提供了比其平坦对应物更高的最高温度下降。增强的冷却能力可以归因于更好的液滴固定和放大的液滴 - 基底接触区域。对于对倾斜表面的影响,该帖子的出色冷却性能尤其清楚,在该倾斜表面上,该帖子成功防止了液滴的滚动和弹跳,从而最大局部温度下降了51%至180%。有趣的是,在略高于Leidenfrost点的温度下,对于相对较窄的Weber数字,由于复杂的惯性,毛细管和气泡(薄膜)动力学的相互作用,底物的液滴反弹而不是分解。总体而言,研究结果表明,大规模的结构会增加leidenfrost温度,并在非等温液滴撞击期间提高液滴分解和界面传热效率。

This study experimentally explores fluid breakup and Leidenfrost dynamics for droplets impacting a heated millimetric post. Using high-speed optical and infrared imaging, we investigate the droplet lifetime, breakup and boiling modes, as well as the cooling performance of different substrates. The post substrate leads to a shorter droplet lifetime and a 20°C higher Leidenfrost temperature compared to a flat substrate, attributed to mixed boiling modes along the height of the post and additional pinning. For temperatures below the Leidenfrost point, in the nucleate boiling regime, the post substrate also provides a larger maximum temperature drop than its flat counterpart. The enhanced cooling capacity can be attributed to better droplet pinning and an enlarged droplet-substrate contact area. The post's superior cooling performance becomes especially clear for impact on an inclined surface, where the post successfully prevents the rolling and bouncing of the droplet, providing a 51% to 180% increase in the maximum local temperature drop. Interestingly, at temperatures slightly above the Leidenfrost point and for a relatively narrow range of Weber numbers, droplets on the post substrate rebound rather than break up due to a complex interplay of inertial, capillary, and bubble (thin film) dynamics. Overall, the findings show that a large-scale structure increases the Leidenfrost temperature and enhances droplet breakup and interfacial heat transfer efficiency during non-isothermal droplet impact.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源