论文标题
情境化语言模型中的否定,协调和量词
Negation, Coordination, and Quantifiers in Contextualized Language Models
论文作者
论文摘要
随着语境化语言模型的成功,许多研究探讨了这些模型真正学到的知识,并且在哪些情况下仍然失败。这项工作的大部分都集中在特定的NLP任务和学习成果上。很少的研究试图使模型的弱点与特定任务的弱点相结合,并专注于嵌入本身及其学习方式。在本文中,我们抓住了这一研究机会:基于理论语言见解,我们探讨了功能词的语义约束是否是学习的,以及周围环境如何影响其嵌入。我们创建合适的数据集,为LMS VIS-VIS功能单词的内部工作提供新的见解,并实施辅助视觉网络界面以进行定性分析。
With the success of contextualized language models, much research explores what these models really learn and in which cases they still fail. Most of this work focuses on specific NLP tasks and on the learning outcome. Little research has attempted to decouple the models' weaknesses from specific tasks and focus on the embeddings per se and their mode of learning. In this paper, we take up this research opportunity: based on theoretical linguistic insights, we explore whether the semantic constraints of function words are learned and how the surrounding context impacts their embeddings. We create suitable datasets, provide new insights into the inner workings of LMs vis-a-vis function words and implement an assisting visual web interface for qualitative analysis.