论文标题

$ \ MATHCAL {P} \ MATHCAL {T} $ - 对称$-Gφ^4 $理论

$\mathcal{P}\mathcal{T}$-symmetric $-gφ^4$ theory

论文作者

Ai, Wen-Yuan, Bender, Carl M., Sarkar, Sarben

论文摘要

具有潜在$ v(φ)= \ textstyle {\ frac {\ frac {1} {2}} m^2φ^2- \ textstyle {\ frac {\ frac {1} {4}}gφ^4 $($ g> 0 $)的标量字段理论是一种源泉,但在非毛刺理论中, $ \ MATHCAL {P} \ MATHCAL {T} $ - 对称框架的定义很好,并且对于时空尺寸$ d = 1 $,它具有正面的真实能量谱。虽然文献中使用的方法并不容易推广到量子场理论,但在本文中,$ \ Mathcal {p} \ Mathcal {t} $ - 对称$-Gφ^4 $理论的路径集成表示形式显示为通用$ d $提供统一的配方。欧几里得分区功能之间的一个新的猜想关系$ z^{\ Mathcal {p} \ Mathcal {t}}}(g)$ ($λ> 0 $)提出了Hermitian理论:$ \ log z^{\ Mathcal {p} \ Mathcal {t}}}}(g)= \ textStyle {\ frac {\ frac {1} {2}} {2}} \ log z _ { 0^+)+\ textstyle {\ frac {1} {2}}} \ log z _ {\ rm herm}( - g - g - {\ rm i} 0^+)$。这种关系确保了非Hermitian $ \ MATHCAL {P} \ MATHCAL {T} $ - 对称$-Gφ^4 $字段理论的真实能量谱。密切相关的关系在$ d = 0 $中严格有效。对于$ d = 1 $,使用$ z^{\ Mathcal {p} \ Mathcal {t}}}(g)$的半经典评估,通过比较地基能量$ e_0^{\ Mathcal {p} \ Mathcal {p} \ Mathcal {tecelt and can(g)(can)(can)(can)(can)( $ e_ {0,\ rm herm}(-g \ pm {\ rm i} 0^+)$。

The scalar field theory with potential $V(φ)=\textstyle{\frac{1}{2}} m^2φ^2-\textstyle{\frac{1}{4}} gφ^4$ ($g>0$) is ill defined as a Hermitian theory but in a non-Hermitian $\mathcal{P}\mathcal{T}$-symmetric framework it is well defined, and it has a positive real energy spectrum for the case of spacetime dimension $D=1$. While the methods used in the literature do not easily generalize to quantum field theory, in this paper the path-integral representation of a $\mathcal{P}\mathcal{T}$-symmetric $-gφ^4$ theory is shown to provide a unified formulation for general $D$. A new conjectural relation between the Euclidean partition functions $Z^{\mathcal{P}\mathcal{T}}(g)$ of the non-Hermitian $\mathcal{P}\mathcal{T}$-symmetric theory and $Z_{\rm Herm}(λ)$ of the $λφ^4$ ($λ>0$) Hermitian theory is proposed: $\log Z^{\mathcal{P}\mathcal{T}}(g)=\textstyle{\frac{1}{2}} \log Z_{\rm Herm}(-g+{\rm i} 0^+)+\textstyle{\frac{1}{2}}\log Z_{\rm Herm}(-g-{\rm i} 0^+)$. This relation ensures a real energy spectrum for the non-Hermitian $\mathcal{P}\mathcal{T}$-symmetric $-gφ^4$ field theory. A closely related relation is rigorously valid in $D=0$. For $D=1$, using a semiclassical evaluation of $Z^{\mathcal{P}\mathcal{T}}(g)$, this relation is verified by comparing the imaginary parts of the ground-state energy $E_0^{\mathcal{P}\mathcal{T}}(g)$ (before cancellation) and $E_{0,\rm Herm}(-g\pm {\rm i} 0^+)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源