论文标题

由于可能的背景BSM贡献,研究了异常耦合极限的校正

Study of corrections for anomalous coupling limits due to the possible background BSM contributions

论文作者

Semushin, Artur E., Soldatov, Evgeny Yu.

论文摘要

对异常耦合的搜索是找到与标准模型任何偏差的可能方法之一。有效的场理论用于与Lagrangian中的异常耦合与较高维度的运算符(由SM字段构建)进行参数化。以经典的方式,基于信号过程引起的标准模型贡献之外的Wilson系数上的限制,而对于背景过程诱导的贡献则可以忽略不计。本文通过对背景过程诱导的标准模型贡献进行核算,对Wilson系数限制的更正进行了研究。 $ z(ν\barν)γjj$和$ w(\ellν)γjjj$ Productions在$ pp $碰撞中使用$ \ sqrt {s} = 13 $ tev和LHC的Atlas实验条件作为示例。在运行II期间收集的案例,并从运行III的III集成的亮度为139 fb $^{ - 1} $和300 fb $^{ - 1} $的案例。预期的95%Cl限制了系数$ f_ \ text {t0}/λ^4 $,$ f_ \ text {t5}/λ^4 $,$ f_ \ f_ \ text {m0}/λ^4 $和$ f_ \ f_ \ f_ \ f_ \ f_ \ \ f_ \ \ f_ \ \ f_ \ text {m2}/λ^4 $在典型和范围内都可以在经典中获得。从$ z(ν\barν)γjj$和$ w(\ellν)γjj$生产校正的一维极限分别比经典的限制分别高达9.1%和4.4%(取决于操作员)。校正后的组合限制比经典的限制高达3.0%(取决于操作员)。还获得了对二维极限的校正,校正的轮廓比经典的轮廓更为严格,最大改善为17.2%。

The search of the anomalous couplings is one of the possible ways to find any deviation from the Standard Model. The effective field theory is used to parameterize the anomalous couplings in the Lagrangian with the operators of higher dimensions, constructed from the SM fields. In the classical way, the limits on the Wilson coefficients of these operators are set based on beyond the Standard Model contributions induced for signal process, whereas the ones induced for background processes are assumed to be negligible. This article provides a study of the corrections to the limits on Wilson coefficients by accounting beyond the Standard Model contributions induced for background processes. The studies of $Z(ν\barν)γjj$ and $W(\ellν)γjj$ productions in $pp$ collisions with $\sqrt{s}=13$ TeV and conditions of the ATLAS experiment at the LHC are used as example. Cases of collected during Run II and expected from Run III integrated luminosities of 139 fb$^{-1}$ and 300 fb$^{-1}$ are considered. The expected 95% CL limits on coefficients $f_\text{T0}/Λ^4$, $f_\text{T5}/Λ^4$, $f_\text{M0}/Λ^4$ and $f_\text{M2}/Λ^4$ are obtained both in classical way and in the way, where the corrections from background anomalous contributions are applied. Corrected one-dimensional limits from $Z(ν\barν)γjj$ and $W(\ellν)γjj$ productions are up to 9.1% and 4.4% (depending on operator) tighter than the classical ones respectively. Corrected combined limits are up to 3.0% (depending on operator) tighter than the classical ones. Corrections to two-dimensional limits are also obtained, corrected contours are more stringent, than the classical ones, and the maximal improvement is of 17.2%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源