论文标题

蜘蛛图的痕量重建问题

The trace reconstruction problem for spider graphs

论文作者

Sun, Alec, Yue, William

论文摘要

我们研究蜘蛛图的痕量重建问题。令$ n $为蜘蛛的节点数量,而$ d $是每条腿的长度,并假设我们从删除通道中为蜘蛛的独立痕迹提供了蜘蛛的独立痕迹,在该通道中,每个非根节点均以概率$ q $删除。这是在理论计算机科学中对字符串跟踪重建问题的自然概括,这与蜘蛛具有一条腿的特殊情况相对应。在$ d \ ge \ log_ {1/q}(n)$的制度中,可以将问题简化为Vanilla字符串跟踪重建问题。因此,我们研究了更有趣的制度$ d \ le \ log_ {1/q}(n)$,其中蜘蛛的整腿都被删除了不可忽略的概率。我们描述了一种算法,该算法使用$ \ exp \ left(\ Mathcal {o} \ left(\ frac {(nq^d)^{1/3}} {d^{1/3}}(1/3}}}(\ log n)(\ log n)^{2/3} {2/3} \ right)\ right)我们的算法适用于所有删除概率$ q \ in(0,1)$。

We study the trace reconstruction problem for spider graphs. Let $n$ be the number of nodes of a spider and $d$ be the length of each leg, and suppose that we are given independent traces of the spider from a deletion channel in which each non-root node is deleted with probability $q$. This is a natural generalization of the string trace reconstruction problem in theoretical computer science, which corresponds to the special case where the spider has one leg. In the regime where $d\ge \log_{1/q}(n)$, the problem can be reduced to the vanilla string trace reconstruction problem. We thus study the more interesting regime $d\le \log_{1/q}(n)$, in which entire legs of the spider are deleted with non-negligible probability. We describe an algorithm that reconstructs spiders with high probability using $\exp\left(\mathcal{O}\left(\frac{(nq^d)^{1/3}}{d^{1/3}}(\log n)^{2/3}\right)\right)$ traces. Our algorithm works for all deletion probabilities $q\in(0,1)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源